Abstract

The infrared transmittance of nitrobenzene has been measured for wavelengths between 0.7 and 12 μ for seven samples ranging in thickness from 2 cm to about 10 μ. Other published information has been used to extend these transmittance spectra to 25 μ. These over-all data are presented as an absorption-coefficient spectrum from 0.7 to 25 μ. In addition, this absorption-coefficient spectrum has been analyzed in terms of Kerr-coefficient information which may be extrapolated from visible and near-infrared data. It is concluded that Kerr-cell modulation of a near-infrared light beam (to 2 μ) is feasible. Kerr-cell modulation in the 2–15 μ region appears to be unfeasible; however, there may be a good possibility of such operation in the 15–25-μ range.

© 1961 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Dunnington, Phys. Rev. 38, 1506 (1931).
    [Crossref]
  2. J. W. Beams, Revs. Modern Phys. 4, 133 (1932).
    [Crossref]
  3. M. Born, Optik (Julius Springer-Verlag, Berlin, 1933), p. 367.
  4. C. G. LeFevre and R. J. W. LeFevre, Revs. Pure and Appl. Chem. 5, 261 (1955).
  5. L. Fieser and M. Fieser, Organic Chemistry (D. C. Heath and Company, Boston, 1944), p. 574.
  6. Purification procedures are detailed by N. J. White, Rev. Sci. Instr. 6, 22 (1935).
    [Crossref]
  7. P. Debye, Polar Molecules (Dover Publications, New York, 1945), p. 50.
  8. A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
    [Crossref]
  9. L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley Sons, Inc., New York, 1958), 2nd ed., pp. 297–309.
  10. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), pp. 148–156.
  11. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1945), p. 365.
  12. R. R. Randle and D. H. Whiffen, J. Chem. Soc. 4153 (1952).
  13. I. C. Hisatsune and E. S. Jayadevappa, J. Chem. Phys. 32, 565 (1960).
    [Crossref]
  14. D. A. Dows and J. L. Hoffenberg, J. Chem. Phys. 32, 1581 (1960).
    [Crossref]
  15. R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
    [Crossref]
  16. R. D. Kross and V. A. Fassel, J. Am. Chem. Soc. 78, 4228 (1956).
  17. K. E. Reinert, Z. Naturforsch. 15a, 85 (1960).
  18. J. Trotter, Acta Cryst. 12, 884 (1959).
    [Crossref]
  19. H. A. Stuart, Die Struktur des Freienmoleküls (Julius Springer-Verlag, Berlin, 1952), pp. 416–435.
  20. W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
    [Crossref]
  21. P. Clement, Ann. chim., Ser. 12,  2, 473 (1947).
  22. R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).
  23. Beckman Scientific Instruments, Fullerton, California, Spectrum Set. No. 33-1, Nitrobenzene (0.3 to 3.6 microns).
  24. E. Charney and R. S. Halford, J. Chem. Phys. 29, 221 (1958).
    [Crossref]
  25. H. Lenormant and P. L. Clement, Bull. soc. chim. (France), Ser. 5,  13, 562 (1946).
  26. C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).
  27. H. M. Hershenson, Infrared Absorption Spectra, Index 1945–1957 (Academic Press, Inc., New York, 1959), p. 13.
  28. Documentation of Molecular Spectroscopy, Spectral Data Card No. 2409, nitrobenzene: source, University of Freiburg, Germany, (represented by Spex Industries, Hollis, New York).
  29. Spectral Curve No. 12B, Sadtler Research Laboratories, 1517 Vine St., Philadelphia, Pennsylvania.
  30. International Critical Tables7, pp. 12, 14, 38.
  31. M. Cameo-Bosco, Compt. rend. 248, 1642 (1959).
  32. M. Cameo, Compt. rend. 248, 2761 (1959).
  33. Reference 4, p. 303, where it is noted that the asymmetric band is usually more intense than is the symmetric band.
  34. M. Abraham and R. Becker, Theorie der Elektrizität (B. G. Teubner, Leipzig, 1933) Vol. 2, pp. 149–157.
  35. A. M. Zarem and F. R. Marshall, Rev. Sci. Instr. 21, 514 (1950).
    [Crossref]
  36. N. Lyon, Ann. phys., S. 4,  46, 753 (1915).
    [Crossref]
  37. T. H. Havelock, Proc. Roy. Soc. (London) A80, 28 (1907); Proc. Roy. Soc. (London) A84, 492 (1911); Phys. Rev. 28, 136 (1909).
  38. L. Chaumont, Ann. phys. 4, 61 (1915); Ann. phys. 5, 17 (1916).
  39. V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).
  40. A. Folkierski, Nuclear Instr. and Methods 4, 346 (1959).
    [Crossref]
  41. E. F. Dawson and N. O. Young, J. Opt. Soc. Am. 50, 170 (1960).
    [Crossref]
  42. F. A. Miller and C. H. Wilkens, Analyt. Chem. 24, 1253 (1952).
    [Crossref]
  43. H. Müller, J. Opt. Soc. Am. 31, 286 (1941).
    [Crossref]
  44. Through the kind cooperation of Freeman H. Bentley and Lt. N. T. McDevitt, Materials Central, WADD, Wright-Paterson Air Force Base, Ohio, a copy of another spectrum for a 0.1-mm-thick layer of nitrobenzene between thin CsBr windows was obtained. This spectrum covered the range 15–35 μ, thus extending the previous data from 25–35 μ. In the 15–25 μ range, the peak absorption positions and strengths are confirmed, and in addition, the values of absorption coefficient appear to drop as low as 1 to 2 cm−1 in the 0.044-, and 0.056-, and 0.070-ev regions (28, 22, and 18 μ). Unfortunately, the 0.1-mm sample is too thin to guarantee good accuracy for such small absorption; it certainly seems worth further investigation in order to establish whether such small absorption coefficients really obtain here in this long-wavelength region. Absorption bands indicated in the WADD data (and their absorption coefficient values), some of which do not appear in the previous data, are expressed as ν¯ (α), where both ν¯ and α are in cm−1: 702 (100), 678 (60), 613 (28), 532 (61), 421 (27), 396 (200), 333 (1), 328 (4), 324 (4), 316 (1), 302 (10).

1960 (4)

I. C. Hisatsune and E. S. Jayadevappa, J. Chem. Phys. 32, 565 (1960).
[Crossref]

D. A. Dows and J. L. Hoffenberg, J. Chem. Phys. 32, 1581 (1960).
[Crossref]

K. E. Reinert, Z. Naturforsch. 15a, 85 (1960).

E. F. Dawson and N. O. Young, J. Opt. Soc. Am. 50, 170 (1960).
[Crossref]

1959 (4)

M. Cameo-Bosco, Compt. rend. 248, 1642 (1959).

M. Cameo, Compt. rend. 248, 2761 (1959).

A. Folkierski, Nuclear Instr. and Methods 4, 346 (1959).
[Crossref]

J. Trotter, Acta Cryst. 12, 884 (1959).
[Crossref]

1958 (1)

E. Charney and R. S. Halford, J. Chem. Phys. 29, 221 (1958).
[Crossref]

1956 (2)

R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
[Crossref]

R. D. Kross and V. A. Fassel, J. Am. Chem. Soc. 78, 4228 (1956).

1955 (1)

C. G. LeFevre and R. J. W. LeFevre, Revs. Pure and Appl. Chem. 5, 261 (1955).

1952 (2)

R. R. Randle and D. H. Whiffen, J. Chem. Soc. 4153 (1952).

F. A. Miller and C. H. Wilkens, Analyt. Chem. 24, 1253 (1952).
[Crossref]

1951 (1)

C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).

1950 (1)

A. M. Zarem and F. R. Marshall, Rev. Sci. Instr. 21, 514 (1950).
[Crossref]

1949 (1)

A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
[Crossref]

1947 (1)

P. Clement, Ann. chim., Ser. 12,  2, 473 (1947).

1946 (1)

H. Lenormant and P. L. Clement, Bull. soc. chim. (France), Ser. 5,  13, 562 (1946).

1943 (1)

R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).

1941 (1)

1936 (1)

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

1935 (1)

Purification procedures are detailed by N. J. White, Rev. Sci. Instr. 6, 22 (1935).
[Crossref]

1932 (1)

J. W. Beams, Revs. Modern Phys. 4, 133 (1932).
[Crossref]

1931 (1)

F. G. Dunnington, Phys. Rev. 38, 1506 (1931).
[Crossref]

1928 (1)

V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).

1915 (2)

L. Chaumont, Ann. phys. 4, 61 (1915); Ann. phys. 5, 17 (1916).

N. Lyon, Ann. phys., S. 4,  46, 753 (1915).
[Crossref]

1907 (1)

T. H. Havelock, Proc. Roy. Soc. (London) A80, 28 (1907); Proc. Roy. Soc. (London) A84, 492 (1911); Phys. Rev. 28, 136 (1909).

Abraham, M.

M. Abraham and R. Becker, Theorie der Elektrizität (B. G. Teubner, Leipzig, 1933) Vol. 2, pp. 149–157.

Angus, W. R.

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

Bailey, C. R.

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

Barnes, R. B.

R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).

Beams, J. W.

J. W. Beams, Revs. Modern Phys. 4, 133 (1932).
[Crossref]

Becker, R.

M. Abraham and R. Becker, Theorie der Elektrizität (B. G. Teubner, Leipzig, 1933) Vol. 2, pp. 149–157.

Bellamy, L. J.

L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley Sons, Inc., New York, 1958), 2nd ed., pp. 297–309.

Bentley, Freeman H.

Through the kind cooperation of Freeman H. Bentley and Lt. N. T. McDevitt, Materials Central, WADD, Wright-Paterson Air Force Base, Ohio, a copy of another spectrum for a 0.1-mm-thick layer of nitrobenzene between thin CsBr windows was obtained. This spectrum covered the range 15–35 μ, thus extending the previous data from 25–35 μ. In the 15–25 μ range, the peak absorption positions and strengths are confirmed, and in addition, the values of absorption coefficient appear to drop as low as 1 to 2 cm−1 in the 0.044-, and 0.056-, and 0.070-ev regions (28, 22, and 18 μ). Unfortunately, the 0.1-mm sample is too thin to guarantee good accuracy for such small absorption; it certainly seems worth further investigation in order to establish whether such small absorption coefficients really obtain here in this long-wavelength region. Absorption bands indicated in the WADD data (and their absorption coefficient values), some of which do not appear in the previous data, are expressed as ν¯ (α), where both ν¯ and α are in cm−1: 702 (100), 678 (60), 613 (28), 532 (61), 421 (27), 396 (200), 333 (1), 328 (4), 324 (4), 316 (1), 302 (10).

Born, M.

M. Born, Optik (Julius Springer-Verlag, Berlin, 1933), p. 367.

Cameo, M.

M. Cameo, Compt. rend. 248, 2761 (1959).

Cameo-Bosco, M.

M. Cameo-Bosco, Compt. rend. 248, 1642 (1959).

Charney, E.

E. Charney and R. S. Halford, J. Chem. Phys. 29, 221 (1958).
[Crossref]

Chaumont, L.

L. Chaumont, Ann. phys. 4, 61 (1915); Ann. phys. 5, 17 (1916).

Clement, P.

P. Clement, Ann. chim., Ser. 12,  2, 473 (1947).

Clement, P. L.

H. Lenormant and P. L. Clement, Bull. soc. chim. (France), Ser. 5,  13, 562 (1946).

Cross, P. C.

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), pp. 148–156.

Dawson, E. F.

Debye, P.

P. Debye, Polar Molecules (Dover Publications, New York, 1945), p. 50.

Decius, J. C.

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), pp. 148–156.

Dows, D. A.

D. A. Dows and J. L. Hoffenberg, J. Chem. Phys. 32, 1581 (1960).
[Crossref]

Dunnington, F. G.

F. G. Dunnington, Phys. Rev. 38, 1506 (1931).
[Crossref]

DuVall, R. B.

C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).

Fassel, V. A.

R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
[Crossref]

R. D. Kross and V. A. Fassel, J. Am. Chem. Soc. 78, 4228 (1956).

Fieser, L.

L. Fieser and M. Fieser, Organic Chemistry (D. C. Heath and Company, Boston, 1944), p. 574.

Fieser, M.

L. Fieser and M. Fieser, Organic Chemistry (D. C. Heath and Company, Boston, 1944), p. 574.

Folkierski, A.

A. Folkierski, Nuclear Instr. and Methods 4, 346 (1959).
[Crossref]

Halford, R. S.

E. Charney and R. S. Halford, J. Chem. Phys. 29, 221 (1958).
[Crossref]

Hanna, C. R.

V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).

Havelock, T. H.

T. H. Havelock, Proc. Roy. Soc. (London) A80, 28 (1907); Proc. Roy. Soc. (London) A84, 492 (1911); Phys. Rev. 28, 136 (1909).

Hershenson, H. M.

H. M. Hershenson, Infrared Absorption Spectra, Index 1945–1957 (Academic Press, Inc., New York, 1959), p. 13.

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1945), p. 365.

Hisatsune, I. C.

I. C. Hisatsune and E. S. Jayadevappa, J. Chem. Phys. 32, 565 (1960).
[Crossref]

Hoffenberg, J. L.

D. A. Dows and J. L. Hoffenberg, J. Chem. Phys. 32, 1581 (1960).
[Crossref]

Ingold, C. K.

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

Jayadevappa, E. S.

I. C. Hisatsune and E. S. Jayadevappa, J. Chem. Phys. 32, 565 (1960).
[Crossref]

Kross, R. D.

R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
[Crossref]

R. D. Kross and V. A. Fassel, J. Am. Chem. Soc. 78, 4228 (1956).

LeFevre, C. G.

C. G. LeFevre and R. J. W. LeFevre, Revs. Pure and Appl. Chem. 5, 261 (1955).

LeFevre, R. J. W.

C. G. LeFevre and R. J. W. LeFevre, Revs. Pure and Appl. Chem. 5, 261 (1955).

Lenormant, H.

H. Lenormant and P. L. Clement, Bull. soc. chim. (France), Ser. 5,  13, 562 (1946).

Liddel, V.

R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).

Lynn, L. B.

V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).

Lyon, N.

N. Lyon, Ann. phys., S. 4,  46, 753 (1915).
[Crossref]

Margoshes, M.

R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
[Crossref]

Marshall, F. R.

A. M. Zarem and F. R. Marshall, Rev. Sci. Instr. 21, 514 (1950).
[Crossref]

A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
[Crossref]

McDevitt, Lt. N. T.

Through the kind cooperation of Freeman H. Bentley and Lt. N. T. McDevitt, Materials Central, WADD, Wright-Paterson Air Force Base, Ohio, a copy of another spectrum for a 0.1-mm-thick layer of nitrobenzene between thin CsBr windows was obtained. This spectrum covered the range 15–35 μ, thus extending the previous data from 25–35 μ. In the 15–25 μ range, the peak absorption positions and strengths are confirmed, and in addition, the values of absorption coefficient appear to drop as low as 1 to 2 cm−1 in the 0.044-, and 0.056-, and 0.070-ev regions (28, 22, and 18 μ). Unfortunately, the 0.1-mm sample is too thin to guarantee good accuracy for such small absorption; it certainly seems worth further investigation in order to establish whether such small absorption coefficients really obtain here in this long-wavelength region. Absorption bands indicated in the WADD data (and their absorption coefficient values), some of which do not appear in the previous data, are expressed as ν¯ (α), where both ν¯ and α are in cm−1: 702 (100), 678 (60), 613 (28), 532 (61), 421 (27), 396 (200), 333 (1), 328 (4), 324 (4), 316 (1), 302 (10).

Miller, F. A.

F. A. Miller and C. H. Wilkens, Analyt. Chem. 24, 1253 (1952).
[Crossref]

Müller, H.

Poole, F. L.

A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
[Crossref]

Randle, R. R.

R. R. Randle and D. H. Whiffen, J. Chem. Soc. 4153 (1952).

Reinert, K. E.

K. E. Reinert, Z. Naturforsch. 15a, 85 (1960).

Stuart, H. A.

H. A. Stuart, Die Struktur des Freienmoleküls (Julius Springer-Verlag, Berlin, 1952), pp. 416–435.

Trotter, J.

J. Trotter, Acta Cryst. 12, 884 (1959).
[Crossref]

Whiffen, D. H.

R. R. Randle and D. H. Whiffen, J. Chem. Soc. 4153 (1952).

White, N. J.

Purification procedures are detailed by N. J. White, Rev. Sci. Instr. 6, 22 (1935).
[Crossref]

Wilkens, C. H.

F. A. Miller and C. H. Wilkens, Analyt. Chem. 24, 1253 (1952).
[Crossref]

Williams, V. Z.

R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).

Wilson, C. L.

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

Wilson, E. B.

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), pp. 148–156.

Wright, N.

C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).

Young, C. W.

C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).

Young, N. O.

Zarem, A. M.

A. M. Zarem and F. R. Marshall, Rev. Sci. Instr. 21, 514 (1950).
[Crossref]

A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
[Crossref]

Zworykin, V.

V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).

Acta Cryst. (1)

J. Trotter, Acta Cryst. 12, 884 (1959).
[Crossref]

Analyt. Chem. (3)

R. B. Barnes, V. Liddel, and V. Z. Williams, Analyt. Chem. 15, 700 (1943).

C. W. Young, R. B. DuVall, and N. Wright, Analyt. Chem. 23, 714 (1951).

F. A. Miller and C. H. Wilkens, Analyt. Chem. 24, 1253 (1952).
[Crossref]

Ann. chim. (1)

P. Clement, Ann. chim., Ser. 12,  2, 473 (1947).

Ann. phys. (1)

L. Chaumont, Ann. phys. 4, 61 (1915); Ann. phys. 5, 17 (1916).

Ann. phys., S. 4 (1)

N. Lyon, Ann. phys., S. 4,  46, 753 (1915).
[Crossref]

Bull. soc. chim. (France) (1)

H. Lenormant and P. L. Clement, Bull. soc. chim. (France), Ser. 5,  13, 562 (1946).

Compt. rend. (2)

M. Cameo-Bosco, Compt. rend. 248, 1642 (1959).

M. Cameo, Compt. rend. 248, 2761 (1959).

Elec. Eng. (1)

A. M. Zarem, F. R. Marshall, and F. L. Poole, Elec. Eng. 68, 282 (1949).
[Crossref]

J. Am. Chem. Soc. (2)

R. D. Kross, V. A. Fassel, and M. Margoshes, J. Am. Chem. Soc. 78, 133 (1956).
[Crossref]

R. D. Kross and V. A. Fassel, J. Am. Chem. Soc. 78, 4228 (1956).

J. Chem. Phys. (3)

I. C. Hisatsune and E. S. Jayadevappa, J. Chem. Phys. 32, 565 (1960).
[Crossref]

D. A. Dows and J. L. Hoffenberg, J. Chem. Phys. 32, 1581 (1960).
[Crossref]

E. Charney and R. S. Halford, J. Chem. Phys. 29, 221 (1958).
[Crossref]

J. Chem. Soc. (2)

R. R. Randle and D. H. Whiffen, J. Chem. Soc. 4153 (1952).

W. R. Angus, C. R. Bailey, C. K. Ingold, and C. L. Wilson, J. Chem. Soc., 912 (1936).
[Crossref]

J. Opt. Soc. Am. (2)

Nuclear Instr. and Methods (1)

A. Folkierski, Nuclear Instr. and Methods 4, 346 (1959).
[Crossref]

Phys. Rev. (1)

F. G. Dunnington, Phys. Rev. 38, 1506 (1931).
[Crossref]

Proc. Roy. Soc. (London) (1)

T. H. Havelock, Proc. Roy. Soc. (London) A80, 28 (1907); Proc. Roy. Soc. (London) A84, 492 (1911); Phys. Rev. 28, 136 (1909).

Rev. Sci. Instr. (2)

Purification procedures are detailed by N. J. White, Rev. Sci. Instr. 6, 22 (1935).
[Crossref]

A. M. Zarem and F. R. Marshall, Rev. Sci. Instr. 21, 514 (1950).
[Crossref]

Revs. Modern Phys. (1)

J. W. Beams, Revs. Modern Phys. 4, 133 (1932).
[Crossref]

Revs. Pure and Appl. Chem. (1)

C. G. LeFevre and R. J. W. LeFevre, Revs. Pure and Appl. Chem. 5, 261 (1955).

Trans. Soc. Motion Picture Engrs. (1)

V. Zworykin, L. B. Lynn, and C. R. Hanna, Trans. Soc. Motion Picture Engrs. 7, 748 (1928).

Z. Naturforsch. (1)

K. E. Reinert, Z. Naturforsch. 15a, 85 (1960).

Other (15)

H. A. Stuart, Die Struktur des Freienmoleküls (Julius Springer-Verlag, Berlin, 1952), pp. 416–435.

P. Debye, Polar Molecules (Dover Publications, New York, 1945), p. 50.

L. Fieser and M. Fieser, Organic Chemistry (D. C. Heath and Company, Boston, 1944), p. 574.

M. Born, Optik (Julius Springer-Verlag, Berlin, 1933), p. 367.

L. J. Bellamy, The Infrared Spectra of Complex Molecules (John Wiley Sons, Inc., New York, 1958), 2nd ed., pp. 297–309.

E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company, Inc., New York, 1955), pp. 148–156.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., Princeton, New Jersey, 1945), p. 365.

Reference 4, p. 303, where it is noted that the asymmetric band is usually more intense than is the symmetric band.

M. Abraham and R. Becker, Theorie der Elektrizität (B. G. Teubner, Leipzig, 1933) Vol. 2, pp. 149–157.

Beckman Scientific Instruments, Fullerton, California, Spectrum Set. No. 33-1, Nitrobenzene (0.3 to 3.6 microns).

H. M. Hershenson, Infrared Absorption Spectra, Index 1945–1957 (Academic Press, Inc., New York, 1959), p. 13.

Documentation of Molecular Spectroscopy, Spectral Data Card No. 2409, nitrobenzene: source, University of Freiburg, Germany, (represented by Spex Industries, Hollis, New York).

Spectral Curve No. 12B, Sadtler Research Laboratories, 1517 Vine St., Philadelphia, Pennsylvania.

International Critical Tables7, pp. 12, 14, 38.

Through the kind cooperation of Freeman H. Bentley and Lt. N. T. McDevitt, Materials Central, WADD, Wright-Paterson Air Force Base, Ohio, a copy of another spectrum for a 0.1-mm-thick layer of nitrobenzene between thin CsBr windows was obtained. This spectrum covered the range 15–35 μ, thus extending the previous data from 25–35 μ. In the 15–25 μ range, the peak absorption positions and strengths are confirmed, and in addition, the values of absorption coefficient appear to drop as low as 1 to 2 cm−1 in the 0.044-, and 0.056-, and 0.070-ev regions (28, 22, and 18 μ). Unfortunately, the 0.1-mm sample is too thin to guarantee good accuracy for such small absorption; it certainly seems worth further investigation in order to establish whether such small absorption coefficients really obtain here in this long-wavelength region. Absorption bands indicated in the WADD data (and their absorption coefficient values), some of which do not appear in the previous data, are expressed as ν¯ (α), where both ν¯ and α are in cm−1: 702 (100), 678 (60), 613 (28), 532 (61), 421 (27), 396 (200), 333 (1), 328 (4), 324 (4), 316 (1), 302 (10).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scale model schematic of nitrobenzene indicating relative bond lengths and angles for this 14-atom molecule.

Fig. 2
Fig. 2

Refractive-index data for the 0.2–20-μ region for rock salt (solid curve) obtained from reference 30. Refractive-index data obtained for nitrobenzene, reference 30 (open circles), and derived from reference 24 (solid circles).

Fig. 3
Fig. 3

Infrared transmittance versus photon energy (0.35–1.6 ev) for liquid nitrobenzene between rock-salt windows for two thicknesses, 1.952 cm (solid curve) and 0.635 cm (dashed curve).

Fig. 4
Fig. 4

Infrared transmittance versus photon energy (0.09–0.6 ev) for liquid nitrobenzene between rock-salt windows for three thicknesses, 0.1613 cm (dashed curve), 0.0190 cm (solid curve), and 0.0023 cm (dotted curve).

Fig. 5
Fig. 5

Absorption coefficient (cm−1) versus photon energy (0.09–1.6 ev) for liquid nitrobenzene compiled from transmission data on seven different samples ranging in thickness from 2 to about 0.001 cm.

Fig. 6
Fig. 6

Absorption coefficient (cm−1) versus photon energy (0.05–1.6 ev) for liquid nitrobenzene. Data of this paper are indicated as a solid line. Data extending into the low photon energy range (dashed curve) are calculated from reference 28.

Fig. 7
Fig. 7

Two views of a “thin” Kerr cell design utilizing grooved windows for enhanced field homogeneity.

Tables (3)

Tables Icon

Table I Absorption peak positions and absorption-coefficient values for liquid nitrobenzene.

Tables Icon

Table II Kerr coefficients KK for long wavelengths extrapolated from short-wavelength data.

Tables Icon

Table III Phase shift angles for extrapolated Kerr coefficients corresponding to a breakdown electric field of 1.5×107 v/m.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = [ ( 1 - R ) 2 e - α l ] / ( 1 - R 2 e - 2 α l ) ,
K K = ( n - n ) / E 2 λ ,
δ = ( 2 π l / λ ) ( n - n ) ,
δ = K K · 2 π l E 2