Abstract

Lifetimes for radiative transitions between the lower excited states of atoms of the alkali metals have been calculated by using the central field approximation used by Bates and Damgaard. Branching ratios for downward transitions and total lifetimes of states are tabulated.

© 1961 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Bates and A. Damgaard, Phil. Trans. 242, 101 (1949).
    [CrossRef]
  2. D. R. Hartree, Proc. Cambridge Phil. Soc.,  2489 (1927).
    [CrossRef]
  3. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).
  4. Attention is called to misprints in the paper of Bates and Damgaard. The normalizing factor given in Eq. (13) should read[n*2Γ(n*+l+1)Γ(n*-l)/C]-12.In Eq. (18) the factor [(n*′+n*″/n*′n*″)] should be inverted and the argument of the Γ function in this equation should be written (n*′+n*″+2−p′−p″).

1949 (1)

D. R. Bates and A. Damgaard, Phil. Trans. 242, 101 (1949).
[CrossRef]

1927 (1)

D. R. Hartree, Proc. Cambridge Phil. Soc.,  2489 (1927).
[CrossRef]

Bates, D. R.

D. R. Bates and A. Damgaard, Phil. Trans. 242, 101 (1949).
[CrossRef]

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).

Damgaard, A.

D. R. Bates and A. Damgaard, Phil. Trans. 242, 101 (1949).
[CrossRef]

Hartree, D. R.

D. R. Hartree, Proc. Cambridge Phil. Soc.,  2489 (1927).
[CrossRef]

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).

Phil. Trans. (1)

D. R. Bates and A. Damgaard, Phil. Trans. 242, 101 (1949).
[CrossRef]

Proc. Cambridge Phil. Soc. (1)

D. R. Hartree, Proc. Cambridge Phil. Soc.,  2489 (1927).
[CrossRef]

Other (2)

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).

Attention is called to misprints in the paper of Bates and Damgaard. The normalizing factor given in Eq. (13) should read[n*2Γ(n*+l+1)Γ(n*-l)/C]-12.In Eq. (18) the factor [(n*′+n*″/n*′n*″)] should be inverted and the argument of the Γ function in this equation should be written (n*′+n*″+2−p′−p″).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (11)

Tables Icon

Table I Values of k for doublet transitions.

Tables Icon

Table III Lithium. Total transition probabilities.a

Tables Icon

Table V Sodium. Total transition probabilities.

Tables Icon

Table VII Potassium. Total transition probabilities.

Tables Icon

Table IX Rubidium. Total transition probabilities.

Tables Icon

Table XI Cesium. Total transition probabilities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( A , B ) = 64 π 4 ν 3 3 h S ( A , B ) 2 j A + 1
σ 2 = 1 ( 4 l 2 - 1 ) [ 0 R i R f r d r ] 2 ,
A ( A , B ) = 2.662 × 10 9 k ν 3 σ 2 sec - 1 ,
[n*2Γ(n*+l+1)Γ(n*-l)/C]-12.