Abstract

Wire grids have been fabricated with microscopic elements and periodicity. These wire grids behave as linear polarizers over large portions of the infrared spectrum, confirming predictions from electromagnetic theory. The method of fabrication of grids with periods as small as 463 mμ is described. Limits on the performance of a wire-grid polarizer are set by fineness of period, optical constants of the metal, spectral transmission of the supporting substrate, and by skin-depth effects. Within these limits, excellent polarizer performance may be obtained over a very wide band of wavelengths, and these new wire-grid polarizers do, in fact, cover the range 2–15 μ and beyond. Appreciable polarization is observed at near-infrared and visible wavelengths. Wire grids may be used in convergent beams of radiation or in restricted geometrical arrangements, unlike many pile-of-plate or prism polarizers. These wire-grid polarizers have proved useful in measuring the imperfections of other types of infrared polarizers.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. (a)D. Rittenhouse, Trans. Amer. Phil. Soc. 2, 201 (1786); (b)For a more readily available account of 1(a), see T. D. Cope, J. Franklin Inst. 214, 99 (1932); (c)The writers are indebted to Brooke Hindle of New York University for detailed information on Rittenhouse’s work.
  2. H. Hertz, Electric Waves (Macmillan and Company, Ltd., London, 1893), p. 177.
  3. H. duBois and H. Rubens, Ann. Physik 35, 243 (1911).
    [Crossref]
  4. C. W. Peters and W. K. Pursley, J. Opt. Soc. Am. 42, 877(A) (1954). (a)W. K. Pursley, Doctoral thesis, University of Michigan, 1956.
  5. W. v. Ignatowsky, Ann. Physik,  18, 495 (1905); Ann. Physik 23, 875 (1907); Ann. Physik 25, 116 (1908); Ann. Physik 26, 1032 (1908); Ann. Physik 44, 369 (1914).
    [Crossref]
  6. G. L. Baldwin and A. E. Heins, Math. Scand. 2, 103 (1954).
  7. E. A. Lewis and J. P. Casey, J. Appl. Phys. 23, 605 (1952).
    [Crossref]
  8. C. G. Montgomery, Technique of Microwave Measurements (McGraw-Hill Book Company, Inc., New York, 1947), pp. 157–160.
  9. Patent application has been filed on this method of preparing grids of microscopic wires, and on other, less direct methods.
  10. Note added in proof: Measurements by F. W. Behnke of Perkin-Elmer Corporation show no detectable leakage transmission in the 15 to 25-μ region.
  11. H. Lamb, Proc. London Math. Soc. 29, 523 (1898).
  12. D. F. Edwards and M. J. Bruemmer, J. Opt. Soc. Am. 49, 860 (1959).
    [Crossref]
  13. N. J. Harrick, J. Opt. Soc. Am. 49, 376, 379 (1959).
    [Crossref]
  14. A. S. Makas and W. A. Shurcliff, J. Opt. Soc. Am. 45, 998 (1955).
    [Crossref]
  15. G. R. Bird and W. A. Shurcliff, J. Opt. Soc. Am. 49, 235 (1959).
    [Crossref]
  16. R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

1959 (3)

1955 (1)

1954 (2)

G. L. Baldwin and A. E. Heins, Math. Scand. 2, 103 (1954).

C. W. Peters and W. K. Pursley, J. Opt. Soc. Am. 42, 877(A) (1954). (a)W. K. Pursley, Doctoral thesis, University of Michigan, 1956.

1952 (1)

E. A. Lewis and J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[Crossref]

1949 (1)

R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

1911 (1)

H. duBois and H. Rubens, Ann. Physik 35, 243 (1911).
[Crossref]

1905 (1)

W. v. Ignatowsky, Ann. Physik,  18, 495 (1905); Ann. Physik 23, 875 (1907); Ann. Physik 25, 116 (1908); Ann. Physik 26, 1032 (1908); Ann. Physik 44, 369 (1914).
[Crossref]

1898 (1)

H. Lamb, Proc. London Math. Soc. 29, 523 (1898).

1786 (1)

(a)D. Rittenhouse, Trans. Amer. Phil. Soc. 2, 201 (1786); (b)For a more readily available account of 1(a), see T. D. Cope, J. Franklin Inst. 214, 99 (1932); (c)The writers are indebted to Brooke Hindle of New York University for detailed information on Rittenhouse’s work.

Baldwin, G. L.

G. L. Baldwin and A. E. Heins, Math. Scand. 2, 103 (1954).

Bird, G. R.

Blake, R. P.

R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

Bruemmer, M. J.

Casey, J. P.

E. A. Lewis and J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[Crossref]

duBois, H.

H. duBois and H. Rubens, Ann. Physik 35, 243 (1911).
[Crossref]

Edwards, D. F.

Harrick, N. J.

Heins, A. E.

G. L. Baldwin and A. E. Heins, Math. Scand. 2, 103 (1954).

Hertz, H.

H. Hertz, Electric Waves (Macmillan and Company, Ltd., London, 1893), p. 177.

Ignatowsky, W. v.

W. v. Ignatowsky, Ann. Physik,  18, 495 (1905); Ann. Physik 23, 875 (1907); Ann. Physik 25, 116 (1908); Ann. Physik 26, 1032 (1908); Ann. Physik 44, 369 (1914).
[Crossref]

Lamb, H.

H. Lamb, Proc. London Math. Soc. 29, 523 (1898).

Lewis, E. A.

E. A. Lewis and J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[Crossref]

Makas, A. S.

A. S. Makas and W. A. Shurcliff, J. Opt. Soc. Am. 45, 998 (1955).
[Crossref]

R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

Montgomery, C. G.

C. G. Montgomery, Technique of Microwave Measurements (McGraw-Hill Book Company, Inc., New York, 1947), pp. 157–160.

Peters, C. W.

C. W. Peters and W. K. Pursley, J. Opt. Soc. Am. 42, 877(A) (1954). (a)W. K. Pursley, Doctoral thesis, University of Michigan, 1956.

Pursley, W. K.

C. W. Peters and W. K. Pursley, J. Opt. Soc. Am. 42, 877(A) (1954). (a)W. K. Pursley, Doctoral thesis, University of Michigan, 1956.

Rittenhouse, D.

(a)D. Rittenhouse, Trans. Amer. Phil. Soc. 2, 201 (1786); (b)For a more readily available account of 1(a), see T. D. Cope, J. Franklin Inst. 214, 99 (1932); (c)The writers are indebted to Brooke Hindle of New York University for detailed information on Rittenhouse’s work.

Rubens, H.

H. duBois and H. Rubens, Ann. Physik 35, 243 (1911).
[Crossref]

Shurcliff, W. A.

West, C. D.

R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

Ann. Physik (2)

H. duBois and H. Rubens, Ann. Physik 35, 243 (1911).
[Crossref]

W. v. Ignatowsky, Ann. Physik,  18, 495 (1905); Ann. Physik 23, 875 (1907); Ann. Physik 25, 116 (1908); Ann. Physik 26, 1032 (1908); Ann. Physik 44, 369 (1914).
[Crossref]

J. Appl. Phys. (1)

E. A. Lewis and J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[Crossref]

J. Opt. Soc. Am. (6)

C. W. Peters and W. K. Pursley, J. Opt. Soc. Am. 42, 877(A) (1954). (a)W. K. Pursley, Doctoral thesis, University of Michigan, 1956.

D. F. Edwards and M. J. Bruemmer, J. Opt. Soc. Am. 49, 860 (1959).
[Crossref]

N. J. Harrick, J. Opt. Soc. Am. 49, 376, 379 (1959).
[Crossref]

A. S. Makas and W. A. Shurcliff, J. Opt. Soc. Am. 45, 998 (1955).
[Crossref]

G. R. Bird and W. A. Shurcliff, J. Opt. Soc. Am. 49, 235 (1959).
[Crossref]

R. P. Blake, A. S. Makas, and C. D. West, J. Opt. Soc. Am. 39, 1054 (1949).

Math. Scand. (1)

G. L. Baldwin and A. E. Heins, Math. Scand. 2, 103 (1954).

Proc. London Math. Soc. (1)

H. Lamb, Proc. London Math. Soc. 29, 523 (1898).

Trans. Amer. Phil. Soc. (1)

(a)D. Rittenhouse, Trans. Amer. Phil. Soc. 2, 201 (1786); (b)For a more readily available account of 1(a), see T. D. Cope, J. Franklin Inst. 214, 99 (1932); (c)The writers are indebted to Brooke Hindle of New York University for detailed information on Rittenhouse’s work.

Other (4)

H. Hertz, Electric Waves (Macmillan and Company, Ltd., London, 1893), p. 177.

C. G. Montgomery, Technique of Microwave Measurements (McGraw-Hill Book Company, Inc., New York, 1947), pp. 157–160.

Patent application has been filed on this method of preparing grids of microscopic wires, and on other, less direct methods.

Note added in proof: Measurements by F. W. Behnke of Perkin-Elmer Corporation show no detectable leakage transmission in the 15 to 25-μ region.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Evaporation of metal on a plastic grating replica to form a wire grid. The source is a fine tungsten coil at some distance from the replica. The effective size of the source is somewhat larger than the coil because of residual gas pressure and collisions between metal atoms during evaporation. To limit deposition to the steep faces of the grooves, the source is positioned well below the plane defined by the broad faces of the grooves.

Fig. 2
Fig. 2

Electronmicrograph of the wire elements from a gold grid. The metallic elements shown here are from a section of the gold grid described in the text and in Fig. 4. The gold strips were lifted from the Kel-F replica with a layer of Scotch Tape cement, the cement and strips placed on a conventional electron microscope sample grid, and the cement leached out with organic solvent. The resulting sample has strips less uniform than the original grid and set at a different angle, but the photograph will illustrate the continuity and general form of the microscopic wire grid. Total magnification is 11,000×. The black areas correspond to the metal elements of the grid. The electron microscope replica was prepared by E. S. Emerson. He was also able to make visual observation of the original grid on (CF2CFCl)n, and found that the metal elements were much more uniform than those appearing in the figure. The plastic was so rapidly degraded by the very high beam current required that no photographs could be obtained.

Fig. 3
Fig. 3

Principal transmittance values of a wire-grid polarizer thickly aluminized. k1=maximum transmittance for plane-polarized radiation (no reflection correction); k2=minimum transmittance for plane-polarized radiation (polarizer rotated 90° from setting for k1). Dashed line=reflection correction for (CF2CFCl)n. This polarizer is a 5.2×5.2 cm sq with one thick aluminum element per 463 mμ.

Fig. 4
Fig. 4

Principal transmittance values of a wire-grid polarizer thinly gold coated. This polarizer is identical with the aluminum grid shown in Fig. 3 except that the grid has one thin gold element per 463 mμ.

Fig. 5
Fig. 5

Principal transmittance values of grids of macroscopic metal strips for 3-cm microwaves. This figure is comparable to Figs. 3 and 4, but wavelength is fixed at 3.2 cm and k1, k2 values are obtained from a series of gratings of varying period made from strips of aluminum foil. This figure is a reproduction of Fig. 20 of footnote reference 4(a) shifted from linear to semilog scale. We are indebted to Professor C. W. Peters for permission to reproduce these data. To compare these microwave results with Fig. 3, consider 463 mμ as λ/D=1 in Fig. 3. Most of the quantitative difference may be attributed to resistive losses in aluminum in the visible and near infrared.

Fig. 6
Fig. 6

Principal transmittance of polaroid HR near-infrared polarizer. k1 and k2 are as in Figs. 35, and represent values compiled by A. S. Makas from a number of HR samples having a range of dichromophore concentrations.

Tables (1)

Tables Icon

Table I Principal transmittance values of the wire-grid polarizers as shown in Figs. 3 and 4 at selected wavelengths.