Abstract

In human color vision each incident spectral energy distribution is coded in three values, corresponding to the responses of the red, green, and blue receptor systems. The Stiles-Crawford effect and the color phenomena associated with it indicate that these three values are in a different degree for each wavelength dependent on eccentricity of the point of entry of the light in the pupil.

A rather quantitative description of the facts is given by a theory in which leak factor of the light to the surrounding tissue in the outer and the inner segment is involved. The leak factor implies that for oblique light the effective pathway in the outer segment is shortened. This results in narrowing of the fundamental response curve of the particular receptor.

Theory strongly points to rather high densities of the photopigment in the receptor, but not improbably high. On the contrary, there is agreement with other sound suggestions and estimates of the density value. As absorption curves for the red, green, and blue pigments we used Pitt’s curves. The agreement of different experimental data with this theory strongly supports the Young-Helmholtz hypothesis, as far as the receptor layer is concerned, and also indicates that the curves derived by Pitt are fairly good approximations of the absorption curves of the photopigments after correction for absorption of light by the ocular media.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. von Helmholtz, Handbuch der physiologischen Optik (Leipzig, 1866).
  2. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933).
  3. J. J. Vos, Ophthalmologia (to be published); , 1959.
  4. W. S. Stiles, Proc. Roy. Soc. (London) B123, 90 (1937).
  5. G. S. Brindley, J. Physiol. 122, 332–350 (1953).
  6. W. D. Wright and J. H. Nelson, Proc. Phys. Soc. (London) B48, 401 (1936).
    [Crossref]
  7. G. Toraldo di Francia, Proc. Phys. Soc. (London) B62, 461 (1949).
  8. R. Barer, J. Opt. Soc. Am. 47, 545 (1957).
    [Crossref] [PubMed]
  9. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1948) 2nd ed., pp. 237–256 and 447–449.
  10. J. N. Jean and B. O’Brien, J. Opt. Soc. Am. 39, 1957 (1949).
  11. H. J. A. Dartnall, The Visual Pigments (Methuen and Co., Ltd., London, 1957).
  12. F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).
  13. W. D. Wright, Researches on Normal and Colour Defective Colour Vision (Henry, Kimpton, London, 1946).
  14. W. A. H. Rushton, Proc. Teddington Congress “Visual Problems of Colour,” Paper 1 (1957).
  15. W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).
  16. E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
    [Crossref]
  17. G. Wald, Science 101, 653 (1945).
    [Crossref] [PubMed]
  18. M. A. Bouman, thesis, Utrecht, 1949, p. 65; Documenta Opthalmol. 4, 23 (1950).

1957 (1)

1953 (1)

G. S. Brindley, J. Physiol. 122, 332–350 (1953).

1949 (2)

G. Toraldo di Francia, Proc. Phys. Soc. (London) B62, 461 (1949).

J. N. Jean and B. O’Brien, J. Opt. Soc. Am. 39, 1957 (1949).

1945 (1)

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

1944 (1)

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).

1939 (1)

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).

1938 (1)

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

1937 (1)

W. S. Stiles, Proc. Roy. Soc. (London) B123, 90 (1937).

1936 (1)

W. D. Wright and J. H. Nelson, Proc. Phys. Soc. (London) B48, 401 (1936).
[Crossref]

1933 (1)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933).

Barer, R.

Bouman, M. A.

M. A. Bouman, thesis, Utrecht, 1949, p. 65; Documenta Opthalmol. 4, 23 (1950).

Brindley, G. S.

G. S. Brindley, J. Physiol. 122, 332–350 (1953).

Crawford, B. H.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933).

Dartnall, H. J. A.

H. J. A. Dartnall, The Visual Pigments (Methuen and Co., Ltd., London, 1957).

Jean, J. N.

J. N. Jean and B. O’Brien, J. Opt. Soc. Am. 39, 1957 (1949).

Ludvigh, E.

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

McCarthy, E. F.

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

Nelson, J. H.

W. D. Wright and J. H. Nelson, Proc. Phys. Soc. (London) B48, 401 (1936).
[Crossref]

O’Brien, B.

J. N. Jean and B. O’Brien, J. Opt. Soc. Am. 39, 1957 (1949).

Pitt, F. H. G.

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1948) 2nd ed., pp. 237–256 and 447–449.

Rushton, W. A. H.

W. A. H. Rushton, Proc. Teddington Congress “Visual Problems of Colour,” Paper 1 (1957).

Stiles, W. S.

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).

W. S. Stiles, Proc. Roy. Soc. (London) B123, 90 (1937).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933).

Toraldo di Francia, G.

G. Toraldo di Francia, Proc. Phys. Soc. (London) B62, 461 (1949).

von Helmholtz, H.

H. von Helmholtz, Handbuch der physiologischen Optik (Leipzig, 1866).

Vos, J. J.

J. J. Vos, Ophthalmologia (to be published); , 1959.

Wald, G.

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

Wright, W. D.

W. D. Wright and J. H. Nelson, Proc. Phys. Soc. (London) B48, 401 (1936).
[Crossref]

W. D. Wright, Researches on Normal and Colour Defective Colour Vision (Henry, Kimpton, London, 1946).

Arch. Ophthalmol. (1)

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

J. Opt. Soc. Am. (2)

J. N. Jean and B. O’Brien, J. Opt. Soc. Am. 39, 1957 (1949).

R. Barer, J. Opt. Soc. Am. 47, 545 (1957).
[Crossref] [PubMed]

J. Physiol. (1)

G. S. Brindley, J. Physiol. 122, 332–350 (1953).

Proc. Phys. Soc. (London) (2)

W. D. Wright and J. H. Nelson, Proc. Phys. Soc. (London) B48, 401 (1936).
[Crossref]

G. Toraldo di Francia, Proc. Phys. Soc. (London) B62, 461 (1949).

Proc. Roy. Soc. (London) (4)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933).

W. S. Stiles, Proc. Roy. Soc. (London) B123, 90 (1937).

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).

Science (1)

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

Other (7)

M. A. Bouman, thesis, Utrecht, 1949, p. 65; Documenta Opthalmol. 4, 23 (1950).

W. D. Wright, Researches on Normal and Colour Defective Colour Vision (Henry, Kimpton, London, 1946).

W. A. H. Rushton, Proc. Teddington Congress “Visual Problems of Colour,” Paper 1 (1957).

H. J. A. Dartnall, The Visual Pigments (Methuen and Co., Ltd., London, 1957).

H. von Helmholtz, Handbuch der physiologischen Optik (Leipzig, 1866).

J. J. Vos, Ophthalmologia (to be published); , 1959.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1948) 2nd ed., pp. 237–256 and 447–449.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Gathering of light in a receptor by total reflection and the leak of light by nontotal reflection in the inner segment (p) and the outer segment (ξ).

Fig. 2
Fig. 2

Example of a dielectric antenna and its radiation pattern.

Fig. 3
Fig. 3

Example of absorption spectra of visual purple solutions of various concentrations, plotted as percentages of their respective maxima. Parameter is the density in the maximum (abs = 1−10D). (Reproduced from H. J. A. Dartnall, footnote reference 11, p. 16.)

Fig. 4
Fig. 4

1/η as a function of wavelength according to Stiles’ measurements15 and according to narrowing of the absorption curves and extra effect for the blue system.

Fig. 5
Fig. 5

Hue shift for 3.5-mm eccentricity for four observers, compared with the theoretical curve.

Fig. 6
Fig. 6

Change of shape of the absorption curves. For the blue system, a larger Stiles-Crawford effect is necessary to explain the facts.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 - e - λ c l
λ c l λ c l + ξ l { 1 - e - ( λ c + ξ ) l } · p .
η ( 1 - e - λ c l ) = λ c l λ c l + ξ l { 1 - e - ( λ c + ξ ) l } · p .
η = p / ξ l .