Abstract

The extreme ultraviolet reflectance of aluminum prepared under optimized conditions is reviewed, including a study of the aging parameters. The theory of reflectance-increasing films for the vacuum ultraviolet is discussed. It is shown that single dielectric films, in addition to preventing the growth of an oxide film, can have a surprisingly strong reflectance-increasing effect on aluminum in this spectral region. The use of MgF2 as a reflectance-increasing coating for the extreme ultraviolet above 1100 A is considered in some detail. It is pointed out that two-layer reflectance-increasing coatings on aluminum have only a very small advantage over single-layer coatings in the extreme ultraviolet. The usefulness of single slightly absorbing films as reflectance-increasing coatings is treated. The problem of increasing reflectance in the spectral region below 800 A is discussed. A new apparatus is described which allows the preparation and measurement of film samples without exposure to air. The effect of the new high-reflectance coatings on the relative merit of vacuum ultraviolet monochromator designs is considered.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, J. Opt. Soc. Am. 45, 945 (1955).
    [CrossRef]
  2. G. Hass, W. R. Hunter, and R. Tousey, J. Opt. Soc. Am. 46, 1009 (1956), J. Opt. Soc. Am. 47, 1070 (1957).
    [CrossRef]
  3. G. Hass and R. Tousey, J. Opt. Soc. Am. 49, 593 (1959).
    [CrossRef]
  4. R. Tousey, F. S. Johnson, R. Richardson, and N. Toran, J. Opt. Soc. Am. 41, 696 (1951).
    [CrossRef]
  5. G. Tronstad, Trans. Faraday Soc. 31, 1151 (1935).
    [CrossRef]
  6. W. Walkenhorst, Z. Techn. Physik 22, 14 (1941).
  7. G. Hass, Z. Anorg. u. Allgem. Chem. 254, 96 (1947).
    [CrossRef]
  8. N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).
  9. G. Hass, W. R. Hunter, and R. Tousey, J. Opt. Soc. Am. 47, 120 (1957).
  10. W. C. Walker, J. A. R. Samson, and O. P. Rustgi, J. Opt. Soc. Am. 48, 71 (1958).
    [CrossRef]
  11. F. S. Johnson, K. Watanabe, and R. Tousey, J. Opt. Soc. Am. 41, 702 (1951).
    [CrossRef]
  12. M. Seya, Sci. Light 2, 8 (1952).
  13. T. Namioka, Sci. Light 3, 15 (1954).
  14. H. Ebert, Wied. Ann. 38, 489 (1889).
    [CrossRef]
  15. W. G. Fastie, J. Opt. Soc. Am. 42, 641 (1952), and J. Opt. Soc. Am. 42, 647 (1952).
    [CrossRef]
  16. H. G. Beutler, J. Opt. Soc. Am. 35, 311 (1945).
    [CrossRef]
  17. T. Namioka, J. Opt. Soc. Am. 49, 446 (1959).
    [CrossRef]
  18. H. M. Crosswhite and W. G. Fastie, J. Opt. Soc. Am. 46, 110 (1956).
    [CrossRef]

1959 (2)

1958 (1)

1957 (1)

G. Hass, W. R. Hunter, and R. Tousey, J. Opt. Soc. Am. 47, 120 (1957).

1956 (2)

1955 (1)

1954 (1)

T. Namioka, Sci. Light 3, 15 (1954).

1952 (2)

1951 (2)

1947 (2)

G. Hass, Z. Anorg. u. Allgem. Chem. 254, 96 (1947).
[CrossRef]

N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).

1945 (1)

1941 (1)

W. Walkenhorst, Z. Techn. Physik 22, 14 (1941).

1935 (1)

G. Tronstad, Trans. Faraday Soc. 31, 1151 (1935).
[CrossRef]

1889 (1)

H. Ebert, Wied. Ann. 38, 489 (1889).
[CrossRef]

Beutler, H. G.

Cabrera, N.

N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).

Crosswhite, H. M.

Ebert, H.

H. Ebert, Wied. Ann. 38, 489 (1889).
[CrossRef]

Fastie, W. G.

Haman, J.

N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).

Hass, G.

Hunter, W. R.

Johnson, F. S.

Namioka, T.

T. Namioka, J. Opt. Soc. Am. 49, 446 (1959).
[CrossRef]

T. Namioka, Sci. Light 3, 15 (1954).

Richardson, R.

Rustgi, O. P.

Samson, J. A. R.

Seya, M.

M. Seya, Sci. Light 2, 8 (1952).

Terrien, J.

N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).

Toran, N.

Tousey, R.

Tronstad, G.

G. Tronstad, Trans. Faraday Soc. 31, 1151 (1935).
[CrossRef]

Walkenhorst, W.

W. Walkenhorst, Z. Techn. Physik 22, 14 (1941).

Walker, W. C.

Watanabe, K.

Compt. rend. (1)

N. Cabrera, J. Terrien, and J. Haman, Compt. rend. 224, 1558 (1947), and N. Cabrera, Phil. Mag. 40, 175 (1949).

J. Opt. Soc. Am. (11)

Sci. Light (2)

M. Seya, Sci. Light 2, 8 (1952).

T. Namioka, Sci. Light 3, 15 (1954).

Trans. Faraday Soc. (1)

G. Tronstad, Trans. Faraday Soc. 31, 1151 (1935).
[CrossRef]

Wied. Ann. (1)

H. Ebert, Wied. Ann. 38, 489 (1889).
[CrossRef]

Z. Anorg. u. Allgem. Chem. (1)

G. Hass, Z. Anorg. u. Allgem. Chem. 254, 96 (1947).
[CrossRef]

Z. Techn. Physik (1)

W. Walkenhorst, Z. Techn. Physik 22, 14 (1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

The reflectance of best quality aluminum films before and after 1 hr, 1 day, and 1 month exposure to air. (Wavelength region 1000 to 2000 A.)

Fig. 2
Fig. 2

Oxidation of pure aluminum films in air at room temperature.

Fig. 3
Fig. 3

Calculated and measured effect of oxide films of various thicknesses on the reflectance of aluminum at λ=1216 A.

Fig. 4
Fig. 4

Effect of ultraviolet radiation from a quartz mercury burner on the reflectance of aluminum at 1216 A. (Exposure time, 19 hr at 30% to 40% humidity, distance from 435 w lamp, 8 in.)

Fig. 5
Fig. 5

Reflectance of a 2100 A thick aluminum film as a function of angle of incidence at λ=585 A and λ=735 A.

Fig. 6
Fig. 6

Calculated reflectance of aluminum with 0, 10, and 20 A of oxide as a function of angle of incidence at λ=585 A and λ=735 A.

Fig. 7
Fig. 7

Calculated effect of various nonabsorbing surface films on the reflectance of aluminum at λ=1216 A (Al: n=0.2; k=0.85; surface films: n1=1.4, 1.5, 1.6, 1.7 and 1.8).

Fig. 8
Fig. 8

Reflectance of evaporated Al with and without protective layers of MgF2 of two different thicknesses (t=250 and 380 A) from 1000 to 2000 A (ages of films when measured: 1 day and 6 months).

Fig. 9
Fig. 9

Monitoring curve for controlling the film thickness of MgF2 during the deposition by measuring the reflectance decrease of a single glass surface at λ=3900 A (nglass=1.53; nMgF2=1.38; 4.4% reflectance=100 scale divisions).

Fig. 10
Fig. 10

Calculated effect of a nonabsorbing surface film with n1=1.8 on the reflectance of Al at λ=1216 A and of Ti at λ=6000 A (Al: n=0.2, k=0.85; Ti: n=2.87, k=3.57).

Fig. 11
Fig. 11

Importance of the back surface reflectance on the increase in reflectance obtained from a single layer nonabsorbing coating.

Fig. 12
Fig. 12

Comparison of the maximum reflectance increase obtained from single and double layer nonabsorbing coatings on aluminum at λ=1216 A and on titanium at λ=6000 A.

Fig. 13
Fig. 13

The improvement in grating efficiency produced by the application of fresh Al and Al+MgF2 to an Al-surfaced replica grating in the wavelength range 1000 to 2000 A (600 L/mm grating blazed at 1200 A).

Fig. 14
Fig. 14

Reflectance of evaporated ZnS with and without 250 A of MgF2 in the wavelength range 1000 to 2000 A.

Fig. 15
Fig. 15

Calculated effect of surface films with increasing absorption coefficients on the reflectance of aluminum at λ=1216 A.

Fig. 16
Fig. 16

Reflectance of evaporated platinum and rhodium as a function of wavelength from 585 to 2200 A.

Fig. 17
Fig. 17

Calculated reflectance of platinum coated with aluminum as a function of Al thickness at λ=735 A (Al: n=0.45, k=0.04; Pt: n=1.1, k=0.75).

Fig. 18
Fig. 18

Calculated effect of thin surface films of A12O3 and ZnS on a Pt-Al mirror-opaque Pt with the Al thickness (280 A) chosen for maximum reflectance at λ=735 A (Al2O3: n=1.05, k=0.8; ZnS: n=0.72, k=0.37).

Fig. 19
Fig. 19

Sample chamber attachment for the vacuum ultraviolet monochromator.

Fig. 20
Fig. 20

Vacuum ultraviolet monochromator used with the new evaporation and measurement apparatus.

Fig. 21
Fig. 21

Monochromator designs of interest in the vacuum ultraviolet.

Tables (1)

Tables Icon

Table I Thickness of Al films for which the transmittance is 0.5% at various wavelengths.