Abstract

Interference microscopy has proved useful for the detection and measurement of path differences between an object and its surround. For objects which absorb a fraction of the incident light an additional valuable measurement is the transmittance. Modifications of the AO Baker interference microscope which permit its use as a double-beam microphotometer are described. In some of the systems it is possible to make simultaneous readings of transmittance and optical path. Both visual and photoelectric detection are possible, and in most of the systems light of a finite range of wavelengths may be used.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Pollister and L. Ornstein, Analytical Cytology (McGraw-Hill Book Company, Inc., New York, 1955), Chap. 1.
  2. H. Wolter, Z. Physik 140, 565 (1955).
    [CrossRef]
  3. A. A. Lebedeff, Rev. opt. 9, 385 (1930).
  4. F. H. Smith, Research 8, 385 (1955).
  5. M. Françon, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 24, pp. 452–458.
  6. H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948) and J. Opt. Soc. Am. 44, 289 (1954).
    [CrossRef]
  7. E. P. Clancy, J. Opt. Soc. Am. 42, 357 (1952).
    [CrossRef]
  8. C. J. Koester, J. Opt. Soc. Am. 49, 405 (1959).
    [CrossRef]
  9. F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 360, 361.
  10. M. Berek, Centr. Mineral. Geol.1913, 388; and A. F. Hallimond, Manual of the Polarizing Microscope (Cooke, Troughton, and Simms, Ltd., York, 1953), second edition, p. 64.
  11. C. V. Kent and J. Lawson, J. Opt. Soc. Am. 27, 117 (1937).
    [CrossRef]
  12. C. J. Koester, J. Opt. Soc. Am. 49, 560 (1959).
    [CrossRef]
  13. G. Bruhat, Traité de Polarimétrie (Editions de la Revue d’Optique, Paris, 1930), pp. 70–73.
  14. S. Inoué and C. J. Koester, J. Opt. Soc. Am. 49, 556 (1959).
    [CrossRef]
  15. F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 388–390; and F. E. Wright, J. Opt. Soc. Am. 7, 779 (1923).
    [CrossRef]
  16. M. Françon and B. Sergent, Optica Acta 2, 182 (1955).
    [CrossRef]

1959 (3)

1955 (3)

M. Françon and B. Sergent, Optica Acta 2, 182 (1955).
[CrossRef]

H. Wolter, Z. Physik 140, 565 (1955).
[CrossRef]

F. H. Smith, Research 8, 385 (1955).

1952 (1)

1948 (1)

1937 (1)

1930 (1)

A. A. Lebedeff, Rev. opt. 9, 385 (1930).

Berek, M.

M. Berek, Centr. Mineral. Geol.1913, 388; and A. F. Hallimond, Manual of the Polarizing Microscope (Cooke, Troughton, and Simms, Ltd., York, 1953), second edition, p. 64.

Bruhat, G.

G. Bruhat, Traité de Polarimétrie (Editions de la Revue d’Optique, Paris, 1930), pp. 70–73.

Clancy, E. P.

Françon, M.

M. Françon and B. Sergent, Optica Acta 2, 182 (1955).
[CrossRef]

M. Françon, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 24, pp. 452–458.

Inoué, S.

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 360, 361.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 388–390; and F. E. Wright, J. Opt. Soc. Am. 7, 779 (1923).
[CrossRef]

Jerrard, H. G.

Kent, C. V.

Koester, C. J.

Lawson, J.

Lebedeff, A. A.

A. A. Lebedeff, Rev. opt. 9, 385 (1930).

Ornstein, L.

A. W. Pollister and L. Ornstein, Analytical Cytology (McGraw-Hill Book Company, Inc., New York, 1955), Chap. 1.

Pollister, A. W.

A. W. Pollister and L. Ornstein, Analytical Cytology (McGraw-Hill Book Company, Inc., New York, 1955), Chap. 1.

Sergent, B.

M. Françon and B. Sergent, Optica Acta 2, 182 (1955).
[CrossRef]

Smith, F. H.

F. H. Smith, Research 8, 385 (1955).

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 360, 361.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 388–390; and F. E. Wright, J. Opt. Soc. Am. 7, 779 (1923).
[CrossRef]

Wolter, H.

H. Wolter, Z. Physik 140, 565 (1955).
[CrossRef]

J. Opt. Soc. Am. (6)

Optica Acta (1)

M. Françon and B. Sergent, Optica Acta 2, 182 (1955).
[CrossRef]

Research (1)

F. H. Smith, Research 8, 385 (1955).

Rev. opt. (1)

A. A. Lebedeff, Rev. opt. 9, 385 (1930).

Z. Physik (1)

H. Wolter, Z. Physik 140, 565 (1955).
[CrossRef]

Other (6)

A. W. Pollister and L. Ornstein, Analytical Cytology (McGraw-Hill Book Company, Inc., New York, 1955), Chap. 1.

M. Françon, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 24, pp. 452–458.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 360, 361.

M. Berek, Centr. Mineral. Geol.1913, 388; and A. F. Hallimond, Manual of the Polarizing Microscope (Cooke, Troughton, and Simms, Ltd., York, 1953), second edition, p. 64.

F. A. Jenkins and H. E. White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc., New York, 1937), first edition, pp. 388–390; and F. E. Wright, J. Opt. Soc. Am. 7, 779 (1923).
[CrossRef]

G. Bruhat, Traité de Polarimétrie (Editions de la Revue d’Optique, Paris, 1930), pp. 70–73.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of interference optics plus two-position analyzer. The left half of the two-position analyzer A transmits light whose plane of polarization is perpendicular to the plane of the diagram. The right half of the analyzer transmits the opposite polarization.

Fig. 2
Fig. 2

The 90° rotation half-shade plate. These components replace the two-position analyzer, iris, and photocell of Fig. 1. The analyzer is set to pass only vibrations perpendicular to the plane of the diagram.

Fig. 3
Fig. 3

The appearance of an object of uniform optical path with: (a) the 90° rotation half-shade plate; (b) the biquartz half-shade plate.

Fig. 4
Fig. 4

The rotating analyzer. The polarizer and compensator are adjusted until the light coming through the iris aperture is circularly polarized. The photomultiplier then gives no ac signal as the analyzer rotates.

Fig. 5
Fig. 5

A visual half-shade method. One half of the biquartz plate is right-handed quartz, the other half left-handed, each cut perpendicular to the optic axis. The appearance of the image is as shown in Fig. 3(b).

Fig. 6
Fig. 6

Schematic diagram of object and reference beams passing through two portions of the slide. The solid rectangle represents the specimen, the dashed rectangle represents an equal volume of mounting medium. In making measurements on the object the beams s and r are used. In making measurements on the surround, beams s′ and r′ are used.

Fig. 7
Fig. 7

Relations between the amplitudes of the object (S) and reference (R) beams. (a) Before the object space. (b) After beams leave object space.

Fig. 8
Fig. 8

Transmittance measurements on a 50 magenta filter.

Fig. 9
Fig. 9

Transmittance and optical path difference measurements on a 50 cyan filter.

Tables (1)

Tables Icon

Table I Ratio, k(ϕ), of amplitude transmittances for the polarizations parallel and perpendicular to the plane of incidence for an isotropic plate of index 1.60.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S 0 / R 0 = tan θ p .
S 1 / R 1 = tan θ 1 .
S 0 / R 0 = tan θ p
S 1 / R 1 = tan θ 1 .
S 1 / S 0 = t a t s .
S 1 / S 0 = t a t b
t s t b = t a t s t a t b = S 1 S 0 S 0 S 1 .
t s t b = tan θ 1 tan θ 1 tan θ p tan θ p R 1 R 0 R 0 R 1 .
T = t s 2 / t b 2 = ( tan θ p / tan θ p ) 2 .
k ( ϕ ) = ( S 2 R 1 / S 1 R 2 )
T = [ k 2 ( ϕ ) tan 2 θ p ] / [ k 2 ( ϕ ) tan 2 θ p ] .