Abstract

The new variable-groove-depth grating-type interferometer that was used to obtain experimental interferograms and spectra used for short and long wavelengths (λ<15 μ to λ>4 mm), together with its construction and testing, is described.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, 1958), p. 432.
  2. J. Strong, J. Opt. Soc. Am. 47, 354 (1957).
    [Crossref]
  3. J. Strong and G. Vanasse, J. phys. radium 19, 192 (1958).
    [Crossref]
  4. J. Strong and G. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
    [Crossref]
  5. H. Gebbie and G. Vanasse, Nature 178, 432 (1956).
    [Crossref]
  6. Vanasse, Strong, and Loewenstein, J. Opt. Soc. Am. 49, 309 (1959).
    [Crossref]
  7. G. Vanasse and E. Loewenstein, J. Opt. Soc. Am. 49, 512 (1959).
    [Crossref]
  8. R. G. Greenler, J. Opt. Soc. Am. 47, 130 (1957).
    [Crossref]

1959 (3)

1958 (1)

J. Strong and G. Vanasse, J. phys. radium 19, 192 (1958).
[Crossref]

1957 (2)

1956 (1)

H. Gebbie and G. Vanasse, Nature 178, 432 (1956).
[Crossref]

Gebbie, H.

H. Gebbie and G. Vanasse, Nature 178, 432 (1956).
[Crossref]

Greenler, R. G.

Loewenstein,

Loewenstein, E.

G. Vanasse and E. Loewenstein, J. Opt. Soc. Am. 49, 512 (1959).
[Crossref]

Strong,

Strong, J.

J. Strong and G. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
[Crossref]

J. Strong and G. Vanasse, J. phys. radium 19, 192 (1958).
[Crossref]

J. Strong, J. Opt. Soc. Am. 47, 354 (1957).
[Crossref]

J. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, 1958), p. 432.

Vanasse,

Vanasse, G.

J. Strong and G. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
[Crossref]

G. Vanasse and E. Loewenstein, J. Opt. Soc. Am. 49, 512 (1959).
[Crossref]

J. Strong and G. Vanasse, J. phys. radium 19, 192 (1958).
[Crossref]

H. Gebbie and G. Vanasse, Nature 178, 432 (1956).
[Crossref]

J. Opt. Soc. Am. (5)

J. phys. radium (1)

J. Strong and G. Vanasse, J. phys. radium 19, 192 (1958).
[Crossref]

Nature (1)

H. Gebbie and G. Vanasse, Nature 178, 432 (1956).
[Crossref]

Other (1)

J. Strong, Concepts of Classical Optics (W. H. Freeman and Company, San Francisco, 1958), p. 432.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lamellar grating profile. Groove depth h, groove width a/2, and grating spacing a.

Fig. 2
Fig. 2

Relative illumination in the first three grating orders for monochromatic radiation.

Fig. 3
Fig. 3

Lamellar grating modulator and Czerny-Turner optical system.

Fig. 4
Fig. 4

(a) Lamellar grating in its support. (b) Lamellar grating drive mechanism.

Fig. 5
Fig. 5

(a) Sample photographs taken for the Hartmann test. Ray trajectories from seven facets from each section are indicated in the center portion. (b) Results of the Hartmann test for the fixed section B.

Fig. 6
Fig. 6

Channel spectrum obtained by feeding the output of a Perkin-Elmer monochromator into the modulator system; and scanning with the monochromator, keeping the lamellar grating groove depth constant.

Tables (1)

Tables Icon

Table I Illumination in the first ±3 grating orders k, relative to the central order, as function of groove depth h.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E T = K 2 a 2 ( sin π a sin α / 2 λ π a sin α / 2 λ ) 2 ( sin N π a sin α / λ sin π a sin α / λ ) 2 × cos 2 [ π a sin α 2 λ + π h λ ( 1 + cos α ) ] .
E T A 2 · B 2 · C 2 .
π a sin α / 2 λ = k π / 2             or             sin α = k λ / a .
π a sin α / λ = k π
sin α = k λ / a .
C 2 = cos 2 ( 2 π h / λ + k π / 2 ) .
E 0 ( h ) E 1 cos 2 2 π ν h .
E ( x ) = 0 E 1 ( ν ) d ν + 0 E 1 ( ν ) cos 2 π ν x d ν ,
F ( x ) = E ( x ) - 1 2 E ( 0 ) ,
λ c = a sin α a α ,
λ c = a w / f
w f λ c / a .
F = B λ S ( A / f 2 ) T λ Δ λ