Abstract

The results of a flight with a balloon borne infrared spectrograph are presented. Solar spectra of the region from 1 to 5 μ were obtained at altitudes from 60 000 to 100 000 ft. The atmospheric absorption data obtained from these spectra are compared with theoretical predictions of slant path absorptions and with laboratory data for constant pressure path. It is found that, if the absorption is treated as a function of Pw, the laboratory data and flight data can be fitted by relations of similar form but with different constants.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
    [Crossref]
  2. Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
    [Crossref]
  3. F. Benford, Illum. Eng. Soc. (N. Y.) 42, 527–544 (1947).
  4. Howard, Burch, and Williams, J. Opt. Soc. Am. 46, 186–190, 237–245, 334–338, 452–455 (1956).
    [Crossref]
  5. Gilbert N. Plass, J. Opt. Soc. Am. 42, 677–683 (1952).
    [Crossref]
  6. Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).
  7. Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).
  8. Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
    [Crossref]

1956 (2)

1952 (2)

Gilbert N. Plass, J. Opt. Soc. Am. 42, 677–683 (1952).
[Crossref]

Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
[Crossref]

1947 (1)

F. Benford, Illum. Eng. Soc. (N. Y.) 42, 527–544 (1947).

1944 (1)

Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
[Crossref]

Benedict,

Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
[Crossref]

Benford, F.

F. Benford, Illum. Eng. Soc. (N. Y.) 42, 527–544 (1947).

Brooks,

Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).

Burch,

Carpenter,

Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).

Dale,

Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
[Crossref]

Goddard,

Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
[Crossref]

Howard,

Juza,

Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
[Crossref]

Maher,

Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
[Crossref]

Murcray,

Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).

Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).

Nielson,

Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
[Crossref]

Plass, Gilbert N.

Quesada,

Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).

Speck,

Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
[Crossref]

Strong,

Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
[Crossref]

Swing,

Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).

Taylor,

Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
[Crossref]

Thornton,

Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
[Crossref]

Williams,

Howard, Burch, and Williams, J. Opt. Soc. Am. 46, 186–190, 237–245, 334–338, 452–455 (1956).
[Crossref]

Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).

Wright,

Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).

Illum. Eng. Soc. (N. Y.) (1)

F. Benford, Illum. Eng. Soc. (N. Y.) 42, 527–544 (1947).

J. Chem. Phys. (1)

Taylor, Benedict, and Strong, J. Chem. Phys. 20, 1884–1898 (1952).
[Crossref]

J. Opt. Soc. Am. (2)

Rev. Sci. Instr. (1)

Goddard, Juza, Maher, and Speck, Rev. Sci. Instr. 27, 381–385 (1956).
[Crossref]

Revs. Modern Phys. (1)

Nielson, Thornton, and Dale, Revs. Modern Phys. 16, 307 (1944).
[Crossref]

Other (2)

Carpenter, Wright, Quesada, and Swing, , Geophysical Research Directorate, A.F.C.R.C., Baird-Atomic Inc., Contract AF 19(604)-2405 (November, 1957).

Murcray, Brooks, Murcray, and Williams, , Geophysical Research Directorate, A.F.C.R.C. TN-58-269, Contract AF 19(604)-2069, University of Denver (March, 1958).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Instrumented gondola attached to crane preparatory to launching.

Fig. 2
Fig. 2

Variation of solar spectrum with altitude. 1—94 000 ft, secant 1.2, 11 mm Hg pressure; 2—79 000 ft, secant 1.8, 22 mm Hg pressure; 3—60 000 ft, secant 2.2, 55 mm Hg pressure.

Fig. 3
Fig. 3

Plot of the ν 1 ν 2 A ν d ν vs the logwP for the 4.3-μ CO2 band using the laboratory data of Howard et al.

Fig. 4
Fig. 4

Plot of the ν 1 ν 2 A ν d ν vs logPm for 4.3-μ CO2 band using flight data.

Fig. 5
Fig. 5

Correlation of the observed value of the ν 1 ν 2 A ν d ν for the 4.3-μ CO2 band vs the value obtained using Carpenter’s equivalent path.

Fig. 6
Fig. 6

Plot of the log ν 1 ν 2 A ν d ν vs logPm for the 2.7-μ CO2 band from flight data.

Fig. 7
Fig. 7

Correlation of the value for the 2.7-μ CO2 band of the ν 1 ν 2 A ν d ν vs the value obtained using Carpenter’s equivalent path.

Tables (1)

Tables Icon

Table I Results of analysis of spectra obtained on balloon flight of June 12, 1958.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ν 1 ν 2 A ν d ν ,
ν 1 ν 2 A ν d ν
ν 1 ν 2 A ν d ν ,
ν 1 ν 2 A ν d ν = c w 1 2 ( P + p ) k             for             ν 1 ν 2 A ν d ν < M ,
ν 1 ν 2 A ν d ν = C + D log w + K log ( P + p )             for             ν 1 ν 2 A ν d ν > M .
ν 1 ν 2 A ν d ν
ν 1 ν 2 A ν d ν
ν 1 ν 2 A ν d ν
ν 1 ν 2 A ν d ν = f ( P 1 + p 1 ) ( w / 2 ) .
ν 1 ν 2 A ν d ν = 34 log w + 31.5 log ( P + p ) + 27.5.
ν 1 ν 2 A ν d ν = A log ( P + p ) w + B
ν 1 ν 2 A ν d ν v s ( P + p ) w
ν 1 ν 2 A ν d ν = 32.2 log ( P + p ) w + 27.
ν 1 ν 2 A ν d ν = 36 log Pm + 83.
ν 1 ν 2 A ν d ν = 32.2 log 1 2 ( 240 ) Pm + 27 = 32.2 log Pm + 94.
ν 1 ν 2 A ν d ν = 3.15 w 1 2 ( P + p ) 0.43 .
ν 1 ν 2 A ν d ν = A ( Pm ) n .
ν 1 ν 2 A ν d ν v s Pm on log-log paper .
ν 1 ν 2 A ν d ν = 19.5 ( Pm ) 0.55 .