Abstract

A theory is proposed to account for the color discrimination in the eye which does not require three different kinds of photochemicals or three different kinds of cones. Color discrimination is accomplished by at least three identical receptors positioned at appropriate positions along the outer segment of each cone. Some examples of color matching diagrams that can be obtained with this theory are compared with the CIE color matching diagram. Some comments are made indicating how it might be possible to get three separate signals from three receptors which all are within one cone.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Houstoun, A Treatise on Light (Longmans, Green and Company, London, 1934), p. 151.
  2. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).
  3. Brian O’Brien, J. Opt. Soc. Am. 41, 882 (1951).
    [Crossref]
  4. W. T. M. Forbes, Am. J. Psychol. 40, 1 (1928).
    [Crossref]
  5. F. S. Sjostrand, J. Cellular Comp. Physiol. 33, 383 (1949); J. Cellular Comp. Physiol. 42, 15 (1953).
    [Crossref]
  6. G. Wald, Nerve Impulse (D. Nachmanson, Edward Josiah Macy, Jr., Foundation, New York, 1954), p. 11.
  7. E. Ingelstam, Problems in Contemporary Optics (Istituto Nazionale Di Ottica, Firenze, 1956), p. 640.
  8. Committee on Colorimetry, Optical Society of America, The Science of Color (Thomas Y. Crowell Company, New York, 1953), p. 89
  9. IfiA=IA/(IA+IB+IC),         iB=IB/(IA+IB+IC),thenx=(a1iA+a2iB+a3)/(iA+a4iB+a5)andy=(a6iA+a7iB+a8)/(iA+a4iB+a5),which is the linear transformation used in making the matches.
  10. W. A. H. Rushton and F. W. Campbell, Nature,  174, 1096 (1954).
    [Crossref] [PubMed]
  11. W. A. H. Rushton, Nature 179, 571 (1957).
    [Crossref] [PubMed]
  12. L. T. Troland, J. Opt. Soc. Am. 8, 394 (1924).
    [Crossref]
  13. Koito Motokawa and Mituru Ebe, J. Opt. Soc. Am. 43, 203 (1953).
    [Crossref] [PubMed]
  14. G. Wald, Science 119, 887 (1954).
    [Crossref] [PubMed]

1957 (1)

W. A. H. Rushton, Nature 179, 571 (1957).
[Crossref] [PubMed]

1954 (2)

G. Wald, Science 119, 887 (1954).
[Crossref] [PubMed]

W. A. H. Rushton and F. W. Campbell, Nature,  174, 1096 (1954).
[Crossref] [PubMed]

1953 (1)

1951 (1)

1949 (1)

F. S. Sjostrand, J. Cellular Comp. Physiol. 33, 383 (1949); J. Cellular Comp. Physiol. 42, 15 (1953).
[Crossref]

1928 (1)

W. T. M. Forbes, Am. J. Psychol. 40, 1 (1928).
[Crossref]

1924 (1)

L. T. Troland, J. Opt. Soc. Am. 8, 394 (1924).
[Crossref]

Campbell, F. W.

W. A. H. Rushton and F. W. Campbell, Nature,  174, 1096 (1954).
[Crossref] [PubMed]

Ebe, Mituru

Forbes, W. T. M.

W. T. M. Forbes, Am. J. Psychol. 40, 1 (1928).
[Crossref]

Houstoun, R. A.

R. A. Houstoun, A Treatise on Light (Longmans, Green and Company, London, 1934), p. 151.

Ingelstam, E.

E. Ingelstam, Problems in Contemporary Optics (Istituto Nazionale Di Ottica, Firenze, 1956), p. 640.

Motokawa, Koito

O’Brien, Brian

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

Rushton, W. A. H.

W. A. H. Rushton, Nature 179, 571 (1957).
[Crossref] [PubMed]

W. A. H. Rushton and F. W. Campbell, Nature,  174, 1096 (1954).
[Crossref] [PubMed]

Sjostrand, F. S.

F. S. Sjostrand, J. Cellular Comp. Physiol. 33, 383 (1949); J. Cellular Comp. Physiol. 42, 15 (1953).
[Crossref]

Troland, L. T.

L. T. Troland, J. Opt. Soc. Am. 8, 394 (1924).
[Crossref]

Wald, G.

G. Wald, Science 119, 887 (1954).
[Crossref] [PubMed]

G. Wald, Nerve Impulse (D. Nachmanson, Edward Josiah Macy, Jr., Foundation, New York, 1954), p. 11.

Am. J. Psychol. (1)

W. T. M. Forbes, Am. J. Psychol. 40, 1 (1928).
[Crossref]

J. Cellular Comp. Physiol. (1)

F. S. Sjostrand, J. Cellular Comp. Physiol. 33, 383 (1949); J. Cellular Comp. Physiol. 42, 15 (1953).
[Crossref]

J. Opt. Soc. Am. (3)

Nature (2)

W. A. H. Rushton and F. W. Campbell, Nature,  174, 1096 (1954).
[Crossref] [PubMed]

W. A. H. Rushton, Nature 179, 571 (1957).
[Crossref] [PubMed]

Science (1)

G. Wald, Science 119, 887 (1954).
[Crossref] [PubMed]

Other (6)

R. A. Houstoun, A Treatise on Light (Longmans, Green and Company, London, 1934), p. 151.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

G. Wald, Nerve Impulse (D. Nachmanson, Edward Josiah Macy, Jr., Foundation, New York, 1954), p. 11.

E. Ingelstam, Problems in Contemporary Optics (Istituto Nazionale Di Ottica, Firenze, 1956), p. 640.

Committee on Colorimetry, Optical Society of America, The Science of Color (Thomas Y. Crowell Company, New York, 1953), p. 89

IfiA=IA/(IA+IB+IC),         iB=IB/(IA+IB+IC),thenx=(a1iA+a2iB+a3)/(iA+a4iB+a5)andy=(a6iA+a7iB+a8)/(iA+a4iB+a5),which is the linear transformation used in making the matches.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a cone showing the paths of light rays and possible areas within which three receptors could fall.

Fig. 2
Fig. 2

Amplitude of the voltage vector as a function of distance along the outer segment of a cone of the direct ray, the reflected ray and their sum at three different instants of time.

Fig. 3
Fig. 3

Intensity at a point on the outer segment of a cone as a function of Kλ/X.

Fig. 4
Fig. 4

Intensity as a function of wavelength at three points on the outer segment of the cone corresponding to X/K=200, 300, and 400 mμ.

Fig. 5
Fig. 5

Color-matching diagram showing match between theory and CIE diagram for X/K=200, 300, and 400 mμ and matching through λ=485, 505, 520, and 600 mμ.

Fig. 6
Fig. 6

Color-matching diagram showing match between theory and CIE diagram for X/K=200, 300, and 400 mμ and matching through λ=485, 505, 530, and 600 mμ.

Fig. 7
Fig. 7

Color-matching diagram showing match between theory and CIE diagram for X/K=196, 294, and 392 mμ and matching through λ=485, 505, 530 and 600 mμ.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E = cos [ 2 ( 1 - cos θ ) cos θ 2 π X λ ] ,
I = E 2 = cos 2 2 π K X λ = 1 2 [ 1 + cos 4 π K X λ ] ,
K = 2 cos θ / ( 1 - cos θ ) .
I = 1 2 [ 1 + r cos ( 4 π X / K λ ) ] .
I A = 1 2 F ( λ ) [ 1 + cos 4 π λ A K ] = F ( λ ) cos 2 2 π λ A K ,
I B = 1 2 F ( λ ) [ 1 + cos 4 π λ B K ] = F ( λ ) cos 2 2 π λ B K ,
I C = 1 2 F ( λ ) [ 1 + cos 4 π λ C K ] = F ( λ ) cos 2 2 π λ C K .
iA=IA/(IA+IB+IC),         iB=IB/(IA+IB+IC),
x=(a1iA+a2iB+a3)/(iA+a4iB+a5)
y=(a6iA+a7iB+a8)/(iA+a4iB+a5),