Abstract

Evaporated metal layers with a high uniformity may be obtained by using a system of parallel wires as evaporation source. The distribution of the film thickness is discussed for a simple system of two parallel wires. If the two wires are properly spaced with respect to the receiving surface a maximally flat distribution of film thickness may be obtained. A special example of a system with 12 parallel wires is treated in detail. The method has been used for producing thin films for precision microwave attenuators as well as for semitransparent and dissipative devices in the microwave range.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Vis, J. Opt. Soc. Am. 46, 906 (1956).
    [CrossRef]
  2. R. A. Fisher and J. R. Platt, Rev. Sci. Instr. 8, 505 (1937).
    [CrossRef]
  3. P. Prugne and P. Léger, J. phys. radium 13, 129A (1952).
    [CrossRef]
  4. L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall Ltd., London, 1956).
  5. H. Kiessig, Ann. Physik 10, 715 (1931).
    [CrossRef]
  6. M. Bonitz, Nachr. technik 6, 443 (1956).

1956 (2)

M. Bonitz, Nachr. technik 6, 443 (1956).

V. A. Vis, J. Opt. Soc. Am. 46, 906 (1956).
[CrossRef]

1952 (1)

P. Prugne and P. Léger, J. phys. radium 13, 129A (1952).
[CrossRef]

1937 (1)

R. A. Fisher and J. R. Platt, Rev. Sci. Instr. 8, 505 (1937).
[CrossRef]

1931 (1)

H. Kiessig, Ann. Physik 10, 715 (1931).
[CrossRef]

Bonitz, M.

M. Bonitz, Nachr. technik 6, 443 (1956).

Fisher, R. A.

R. A. Fisher and J. R. Platt, Rev. Sci. Instr. 8, 505 (1937).
[CrossRef]

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall Ltd., London, 1956).

Kiessig, H.

H. Kiessig, Ann. Physik 10, 715 (1931).
[CrossRef]

Léger, P.

P. Prugne and P. Léger, J. phys. radium 13, 129A (1952).
[CrossRef]

Platt, J. R.

R. A. Fisher and J. R. Platt, Rev. Sci. Instr. 8, 505 (1937).
[CrossRef]

Prugne, P.

P. Prugne and P. Léger, J. phys. radium 13, 129A (1952).
[CrossRef]

Vis, V. A.

Ann. Physik (1)

H. Kiessig, Ann. Physik 10, 715 (1931).
[CrossRef]

J. Opt. Soc. Am. (1)

J. phys. radium (1)

P. Prugne and P. Léger, J. phys. radium 13, 129A (1952).
[CrossRef]

Nachr. technik (1)

M. Bonitz, Nachr. technik 6, 443 (1956).

Rev. Sci. Instr. (1)

R. A. Fisher and J. R. Platt, Rev. Sci. Instr. 8, 505 (1937).
[CrossRef]

Other (1)

L. Holland, Vacuum Deposition of Thin Films (Chapman and Hall Ltd., London, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evaporation from a single wire. Total length of the wire 2L, distance from the receiving surface H, element of the receiving surface dF.

Fig. 2
Fig. 2

Calculated evaporation from 2 parallel wires with a normalized spacing s=D/H. The film thickness Δ0 is plotted as a function of u=y/H for w0/πρ=10.

Fig. 3
Fig. 3

Calculated evaporation from several parallel wires with the same evaporation rate w and the same distance H from the receiving surface. The configuration is symmetrical with respect to the origin u=0. (a) 12 wires equally spaced s=D/H=0.8; (b) 12 wires with s=0.8 and two additional wires at u=±4.5; (c) 12 wires with s=0.8 and two additional wires at it u=±4.3.

Fig. 4
Fig. 4

System of parallel evaporating wires. The receiving surface consisting of a mica sheet is mounted just below the wires.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

δ ( x , y ) = w H 2 π 2 ρ R [ L + x ( L + x ) 2 + R 2 + L - x ( L - x ) 2 - R 2 + 1 R tan - 1 L + x R + 1 R tan - 1 L - x R ] ,
δ ( x , y ) w H 2 π ρ R 2 [ 1 - 4 R 3 3 L 3 ( 1 + 6 x 2 L 2 ) ] .
δ 0 = δ ( L ) = w H 2 π ρ ( H 2 + y 2 ) .
δ 0 = w 0 2 π ρ ( 1 + u 2 ) .
Δ 0 = w 0 2 π ρ k = 1 n 1 1 + ( u - u k ) 2 ,
Δ 0 = w 0 π ρ [ 1 + ( s 2 / 4 ) ] × [ 1 - u 4 + u 2 [ 1 - ( 3 s 2 / 4 ) ] u 4 + 2 u 2 [ 1 - ( s 2 / 4 ) ] + [ 1 + ( s 2 / 4 ) ] 2 ] .
Δ 0 = 3 w 0 4 π ρ [ 1 - 9 u 4 9 u 4 + 12 u 2 + 16 ] .