Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Especially an article by Pietsch, “Die Ausdehnung des Gesichtfeldes für weisse und farbige Objekte bei Verschiedenen Refraktionszustanden.” Breslau, 1896.
  2. We are indebted to Dr. Kellner for the idea of passing beams of small cross section through the different zones of the eye and the use of strips as described on page 26 to obtain such beams.
  3. HelmholtzPhysiologischen Optik, 3rd Ed., pp. 268 and 269, Vol. 1.
  4. Proceedings of the Royal Society A, Vol.  90 (1914).
  5. “Handbuch der Phys. Opt.”
  6. Arch. für Oph. 25, p. 257 (1879).
  7. “Die Grenzen des Gesichtsfeldes in Beziehung zu denen der Netzhaut,” Arch. für Ophth. 23, p. 255 (1877).
  8. “Note sur la Situation des Image retiennes formées par les Rayons tres obliques sur l’Axe optique,” Arch. d’Ophth.,  18, p. 685 (1898).
  9. Oeuvres de Young, 1896, p. 134.
  10. “Physiologic Optics,” published by The Keystone Press, 1904. Chapter xiv.

1914 (1)

Proceedings of the Royal Society A, Vol.  90 (1914).

1898 (1)

“Note sur la Situation des Image retiennes formées par les Rayons tres obliques sur l’Axe optique,” Arch. d’Ophth.,  18, p. 685 (1898).

1879 (1)

Arch. für Oph. 25, p. 257 (1879).

1877 (1)

“Die Grenzen des Gesichtsfeldes in Beziehung zu denen der Netzhaut,” Arch. für Ophth. 23, p. 255 (1877).

Helmholtz,

HelmholtzPhysiologischen Optik, 3rd Ed., pp. 268 and 269, Vol. 1.

Pietsch,

Especially an article by Pietsch, “Die Ausdehnung des Gesichtfeldes für weisse und farbige Objekte bei Verschiedenen Refraktionszustanden.” Breslau, 1896.

Arch. d’Ophth. (1)

“Note sur la Situation des Image retiennes formées par les Rayons tres obliques sur l’Axe optique,” Arch. d’Ophth.,  18, p. 685 (1898).

Arch. für Oph. (1)

Arch. für Oph. 25, p. 257 (1879).

Arch. für Ophth. (1)

“Die Grenzen des Gesichtsfeldes in Beziehung zu denen der Netzhaut,” Arch. für Ophth. 23, p. 255 (1877).

Proceedings of the Royal Society A (1)

Proceedings of the Royal Society A, Vol.  90 (1914).

Other (6)

“Handbuch der Phys. Opt.”

Especially an article by Pietsch, “Die Ausdehnung des Gesichtfeldes für weisse und farbige Objekte bei Verschiedenen Refraktionszustanden.” Breslau, 1896.

We are indebted to Dr. Kellner for the idea of passing beams of small cross section through the different zones of the eye and the use of strips as described on page 26 to obtain such beams.

HelmholtzPhysiologischen Optik, 3rd Ed., pp. 268 and 269, Vol. 1.

Oeuvres de Young, 1896, p. 134.

“Physiologic Optics,” published by The Keystone Press, 1904. Chapter xiv.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

F. 1
F. 1

Diagram of apparatus, plan.

F. 2
F. 2

Diagram of apparatus, elevation.

F. 3
F. 3

Photograph of apparatus.

F. 4
F. 4

Detailed drawing of block and strips.

F. 5
F. 5

Detail of front mirror used in obtaining two rays with independently variable inclination.

F. 6
F. 6

Spherical aberration curves from measurements of Dr. Chapman’s eye. Abscissaæ represent 0.1 millimeters from retina. Ordinates represent distance in millimeters of zone from axis.

F. 7
F. 7

Spherical aberration curves from measurement of horizontal meridian of Mr. Ames’ eye.

F. 8
F. 8

Spherical aberration curves from measurements of vertical meridian of Mr. Ames’ eye.

F. 9
F. 9

Spherical aberration curves from measurement of horizontal meridian of Mr. Ames’ eye, the aberration from corresponding zones on both sides of the axis being determined at the same time.

F. 10
F. 10

Actual shape of spherical aberration bundles as constructed from measurements of Dr. Chapman’s eye. The solid line shows the focus of a spot of white light positioned at infinity. The dash lines show the position of the retina in the bundles when the eye focused on infinity sees most sharply a spot of the given color.

F. 10a
F. 10a

Horizontal Meridian Reading Table III.

F. 10b
F. 10b

Vertical Meridian Table IV

F. 10c
F. 10c

Combined Horizontal and Vertical Meridians TablesIIIIV

F. 11
F. 11

Chromatic aberration curves for eyes of four individuals; ordinates are relative focal distances, δv/v.

F. 12
F. 12

Diagrammatic form of astigmatic image bundle.

F. 13
F. 13

Position of the primary and secondary astigmatic image fields relative to retina as computed from data by authors indicated.

F. 14
F. 14

Positions of the primary and secondary astigmatic image fields relative to retina as computed from Loria’s data.

F. 15
F. 15

Positions of the astigmatic image fields as computed from data given by Rasmus, Wauer and Heinrich.

F. 17
F. 17

Positions of the primary and secondary astigmatic image fields relative to the retina from measurements on Mr. Ames’ eye using vertical and horizontal line stimuli of the wavelength given.

F. 18
F. 18

Diagram of improved apparatus for measuring oblique or field astigmatism.

F. 19
F. 19

Curves showing the position of the primary and secondary astigmatic fields relative to the retina from the combined results of Mr. Ames’ readings for all wave-lengths, correction having been made for chromatic aberration. Correction has also been made for Mr. Ames’ corneal astigmatism so that the two fields coincide with the retina on the axis.

F. 20
F. 20

Curves showing the position in space of the primary and secondary astigmatic object fields; that is where tangential and radial lines of the colors given will focus on the retina when the eye is focused for yellow at a point two meters distant. These curves are constructed from the averages of all Mr. Ames’ readings, corrections being made for his corneal astigmatism so that the primary and secondary image fields will coincide on the axis.

F. 21
F. 21

Distortion, curves show apparent shortening of radial line from axis to designated angle. Curve B shows distortion due to spherical shape of retina. Curve A shows distortion due to both spherical shape of retina and optical effect of lens system as calculated by Matthiessen.

F. 22
F. 22

Grids showing distortion in eye. The barrel-shaped grid shows the amount of distortion the rectilinear grid suffers when viewed by the eye.

Tables (13)

Tables Icon

Table 1 Astigmatism, Oblique Rays, Eye.

Tables Icon

Table 2 Albini’s Results, Averaged.

Tables Icon

Table 3 Heinrich’s Results.

Tables Icon

Table 4 Loria’s Results.

Tables Icon

Table I Spherical Aberration. (Dr. Chapman.)

Tables Icon

Table II Spherical Aberration. (Dr. Chapman.)

Tables Icon

Table III Spherical Aberration. (Mr. Ames.) (Horizontal Meridian.)

Tables Icon

Table IV Spherical Aberration. (Mr. Ames.) (Vertical Meridian.)

Tables Icon

Table V Spherical Aberration. (Mr. Ames.) (Horizontal Meridian.)

Tables Icon

Table VI Chromatic Aberration, Accommodation Relaxed. Monochromatic Fixation.

Tables Icon

Table VII Oblique Astigmatism. (Mr. Ames, Red Stimulus.)

Tables Icon

Table VIII Oblique Astigmatism. (Mr. Ames, Stimuli of Various Wave-lengths.)

Tables Icon

Table IX Oblique Astigmatism. (Mr. Ames, with Improved Apparatus.)