Abstract

The image quality of an uncoated fiber bundle is influenced by light leakage between neighboring fibers. The point-spread function due to light leakage between neighboring fibers is used to calculate the static and dynamic frequency response of an uninsulated fiber bundle. The static and dynamic frequency response is also measured for a bundle of uncoated fibers. The possibility of optically insulating smaller diameter fibers by depositing a thin coating of low refractive-index plastic material is well known. A process for drawing glass fibers with a core of high refractive-index glass and a 1–2-μ thick coating of low refractiveindex glass has been developed. This method is also used for depositing a second metal coating on fibers and drawing “multiple fibers.” A discussion on the dependence of the coating thickness on various parameters of the over-all optical system is given.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. S. Van Heel, Ingenieur (Utrecht) 24 (1953).
  2. N. S. Kapany in Concepts of Classical Optics, by John Strong (W. H. Freeman and Company, San Francisco, 1958), Appendix N.
  3. Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).
  4. N. S. Kapany, J. Opt. Soc. Am. 49, 770 (1959), preceding article.
    [Crossref]
  5. P. M. Duffieux, L’Integrale de Fourier et Ses Applications a l’Optique (Rennes, 1946).
  6. P. Lindbert, Optica Acta (Paris) 2 (1954).
  7. Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).
  8. Kapany, Eyer, and Shannon, J. Opt. Soc. Am. 47, 1 (1957).
    [Crossref]
  9. H. S. Soutter, Proc. Phys. Soc. (London) 24, 166 (1912).
    [Crossref]

1959 (1)

1958 (1)

Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).

1957 (2)

Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).

Kapany, Eyer, and Shannon, J. Opt. Soc. Am. 47, 1 (1957).
[Crossref]

1954 (1)

P. Lindbert, Optica Acta (Paris) 2 (1954).

1953 (1)

A. C. S. Van Heel, Ingenieur (Utrecht) 24 (1953).

1912 (1)

H. S. Soutter, Proc. Phys. Soc. (London) 24, 166 (1912).
[Crossref]

Duffieux, P. M.

P. M. Duffieux, L’Integrale de Fourier et Ses Applications a l’Optique (Rennes, 1946).

Eyer,

Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).

Kapany, Eyer, and Shannon, J. Opt. Soc. Am. 47, 1 (1957).
[Crossref]

Higgins,

Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).

Kapany,

Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).

Kapany, Eyer, and Shannon, J. Opt. Soc. Am. 47, 1 (1957).
[Crossref]

Kapany, N. S.

N. S. Kapany, J. Opt. Soc. Am. 49, 770 (1959), preceding article.
[Crossref]

N. S. Kapany in Concepts of Classical Optics, by John Strong (W. H. Freeman and Company, San Francisco, 1958), Appendix N.

Keim,

Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).

Lamberts,

Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).

Lindbert, P.

P. Lindbert, Optica Acta (Paris) 2 (1954).

Shannon,

Soutter, H. S.

H. S. Soutter, Proc. Phys. Soc. (London) 24, 166 (1912).
[Crossref]

Strong, John

N. S. Kapany in Concepts of Classical Optics, by John Strong (W. H. Freeman and Company, San Francisco, 1958), Appendix N.

Van Heel, A. C. S.

A. C. S. Van Heel, Ingenieur (Utrecht) 24 (1953).

Wolfe,

Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).

Ingenieur (Utrecht) (1)

A. C. S. Van Heel, Ingenieur (Utrecht) 24 (1953).

J. Opt. Soc. Am. (4)

Kapany, Eyer, and Keim, J. Opt. Soc. Am. 47, 5 (1957).

N. S. Kapany, J. Opt. Soc. Am. 49, 770 (1959), preceding article.
[Crossref]

Lamberts, Higgins, and Wolfe, J. Opt. Soc. Am. 48, 7 (1958).

Kapany, Eyer, and Shannon, J. Opt. Soc. Am. 47, 1 (1957).
[Crossref]

Optica Acta (Paris) (1)

P. Lindbert, Optica Acta (Paris) 2 (1954).

Proc. Phys. Soc. (London) (1)

H. S. Soutter, Proc. Phys. Soc. (London) 24, 166 (1912).
[Crossref]

Other (2)

P. M. Duffieux, L’Integrale de Fourier et Ses Applications a l’Optique (Rennes, 1946).

N. S. Kapany in Concepts of Classical Optics, by John Strong (W. H. Freeman and Company, San Francisco, 1958), Appendix N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

F. 1
F. 1

Illustrating the transmitted image of a periodic test object at limiting resolution of a perfect fiber bundle. (a) Image structure at various test object orientations. (b) Image contrast at limiting resolution for ϕ=0, π/3, and 2π/3 as a function of test object position. (c) Image intensity variation at limiting resolution for ϕ=π/6, π/2, and 5π/6.

F. 2
F. 2

Illustrating static point-spread function of an uninsulated fiber assembly. (a) Actual point-spread function. (b) Point-spread function at = 0, 2π/3, and π/3 azimuths. (c) Point-spread function at = π/6, π/2, and 5π/6 azimuths.

F. 3
F. 3

Frequency response of a uniform disk; the negative contrast indicating spurious resolution is shown by the dotted line.

F. 4
F. 4

Frequency response of an uninsulated bundle when I1/I2 is equal to 50; the negative contrast indicating spurious resolution is shown by the dotted line.

F. 5
F. 5

Frequency response of an uninsulated bundle when I1/I2 is equal to 10; the negative contrast indicating spurious resolution shown by the dotted line.

F. 6
F. 6

Frequency response of an uninsulated bundle when I1/I2 is equal to 3; the negative contrast indicating spurious resolution shown by the dotted line.

F. 7
F. 7

Illustrating the test object, static image, and dynamic image, transmitted by a 40-μ diam fiber bundle.

F. 8
F. 8

The measured static and dynamic frequency response of a 40-μ diam uninsulated fiber bundle.

F. 9
F. 9

The limiting light cone angle for glass-coated glass fibers.

F. 10
F. 10

Coated fiber and “multiple fiber” drawing machine. (a) Diagramatic illustration of the fiber drawing machine. (b) Photograph of the fiber drawing machine.

F. 11
F. 11

Illustrating coated fibers. (a) Photograph of an uncoated and two coated fibers. (b) Twyman-Green interferogram of a coated fiber section.

Tables (1)

Tables Icon

Table I Minimum thickness of the intermediate layer required to reduce transmission to 0.01–0.001%.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( X ) 0 D G ( X + x D 2 ) F ( x ) d x .
F ( x ) = 2 [ x ( D x ) ] 1 2 in 0 x D .
I ( X ) = D X D 2 [ x ( D x ) ] 1 2 d x in 0 X D = 1 2 + 2 π D 2 ( 2 X D ) [ X ( D X ) ] 1 2 + 1 π sin 1 ( 2 X D 1 ) in 0 X D .
A ( x ) = + I ( x , y ) d y
E ( x 0 ) = x 0 A ( x ) d x .
F ( N ) = + A ( x ) exp ( 2 π i N x ) d x .
I ( x , y ) = I 1 for x 2 + y 2 r 2 = 0 for x 2 + y 2 > r 2
A ( x ) = ( r 2 x 2 ) 1 2 1 2 π r 2 .
F ( N ) = 2 J 1 ( π N D ) ( π N D ) ,
I ( x , y ) = I 1 for 0 < ( x 2 + y 2 ) 1 2 < r = I 2 for r < ( x 2 + y 2 ) 1 2 < 3 r = 0 for 3 r < ( x 2 + y 2 ) 1 2 }
A ( x ) = + I ( x , y ) d y = 2 I 2 ( 9 r 2 x 2 ) 1 2 for 3 r < x < r = 2 I 2 [ ( 9 r 2 x 2 ) 1 2 ( r 2 x 2 ) 1 2 ] + 2 I 1 ( r 2 x 2 ) 1 2 for r < x < r = 2 I 2 ( 9 r 2 x 2 ) 1 2 for r < x < 3 r }
F ( N ) = [ I 1 I 2 I 1 + 8 I 2 ] [ 1 1 2 π r 2 ] r r ( r 2 x 2 ) 1 2 exp ( 2 π i N x ) d x + [ I 2 ( I 1 + 8 I 2 ) ] [ 1 1 2 π r 2 ] × 3 r 3 r ( 9 r 2 x 2 ) 1 2 · exp ( 2 π i N x ) d x = [ 2 ( I 1 I 2 ) ( I 1 + 8 I 2 ) ] · J 1 ( π N D ) ( π N D ) + [ 18 I 2 ( I 1 + 8 I 2 ) ] J 1 ( 3 π N D ) ( 3 π N D ) .
F ( N ) = C 2 C 1 = [ I max I min I max + I min ] image [ I max I min I max + I min ] object ,
α = sin 1 ( N 2 N 2 ) 1 2