Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957).
  2. A. Lowan, “Tables of scattering functions for spherical particles,” National Bureau of Standards A. M. S.-4, Washington, D. C. (1948).
  3. F. T. Gucker and S. H. Cohn, J. Colloid Sci. 8, 555 (1953).
    [CrossRef]
  4. “Tables of circular and hyperbolic sines and cosines,” U. S. Department of Commerce M. T.-3, Washington, D. C. (1949),

1953 (1)

F. T. Gucker and S. H. Cohn, J. Colloid Sci. 8, 555 (1953).
[CrossRef]

Cohn, S. H.

F. T. Gucker and S. H. Cohn, J. Colloid Sci. 8, 555 (1953).
[CrossRef]

Gucker, F. T.

F. T. Gucker and S. H. Cohn, J. Colloid Sci. 8, 555 (1953).
[CrossRef]

Lowan, A.

A. Lowan, “Tables of scattering functions for spherical particles,” National Bureau of Standards A. M. S.-4, Washington, D. C. (1948).

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957).

J. Colloid Sci. (1)

F. T. Gucker and S. H. Cohn, J. Colloid Sci. 8, 555 (1953).
[CrossRef]

Other (3)

“Tables of circular and hyperbolic sines and cosines,” U. S. Department of Commerce M. T.-3, Washington, D. C. (1949),

H. C. Van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957).

A. Lowan, “Tables of scattering functions for spherical particles,” National Bureau of Standards A. M. S.-4, Washington, D. C. (1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table I Mie scattering coefficients for spheres, m = 1.75.a

Tables Icon

Table II Angular intensities for spheres, m = 1.75.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a n = [ 1 + i S n ( β ) C n ( α ) m C n ( α ) S n ( β ) S n ( β ) S n ( α ) m S n ( α ) S n ( β ) ] 1 b n = [ 1 + i m S n ( β ) C n ( α ) C n ( α ) S n ( β ) m S n ( β ) S n ( α ) S n ( α ) S n ( β ) ] 1 .