Abstract

More or less uniform cells of ultraviolet transparent fused quartz about 1 μ thick and over 2 in. in diam have been produced and filled with sodium-potassium alloy, which is liquid at room temperature. These filters, while opaque in the visible, are transparent in the ultraviolet, with a cutoff wavelength lying between that for pure sodium (2100 A) and pure potassium (3400 A) and determined by the alloy composition. A tentative formula for the calculation of the cutoff wavelength is proposed and tested. The optical constants for the alloy were determined and are compared with those of the pure metals and with Kronig’s theory.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, Phil. Mag. 38, 98 (1919).
    [Crossref]
  2. R. W. Wood, Phys. Rev. 44, 353 (1933).
    [Crossref]
  3. R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
    [Crossref]
  4. R. W. Wood, Phil. Mag. 32, 364 (1916).
    [Crossref]
  5. H. M. O’Bryan, Rev. Sci. Instr. 6, 328 (1935).
    [Crossref]
  6. C. Zener, Nature 132, 968 (1933).
    [Crossref]
  7. R. Kronig, Nature 133, 211 (1934).
    [Crossref]
  8. R. Kronig, Proc. Roy. Soc. (London) A124, 409 (1929);Proc. Roy. Soc. (London) 133, 255 (1931).
    [Crossref]
  9. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), p. 515, Eqs. (23) and (24).
  10. J. A. Stratton, reference 9, p. 506, Eq. (82).
  11. R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
    [Crossref]
  12. The reflectivity was taken from the American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill Book Company Inc., New York, 1957), p. 6–108.
  13. H. E. Ives and H. B. Briggs, J. Opt. Soc. Am. 26, 238 (1936);J. Opt. Soc. Am. 27, 181 (1937).
    [Crossref]
  14. F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1940), p. 641, Eqs. (38) and (39).

1947 (1)

1938 (1)

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
[Crossref]

1936 (1)

1935 (1)

H. M. O’Bryan, Rev. Sci. Instr. 6, 328 (1935).
[Crossref]

1934 (1)

R. Kronig, Nature 133, 211 (1934).
[Crossref]

1933 (2)

C. Zener, Nature 132, 968 (1933).
[Crossref]

R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

1929 (1)

R. Kronig, Proc. Roy. Soc. (London) A124, 409 (1929);Proc. Roy. Soc. (London) 133, 255 (1931).
[Crossref]

1919 (1)

R. W. Wood, Phil. Mag. 38, 98 (1919).
[Crossref]

1916 (1)

R. W. Wood, Phil. Mag. 32, 364 (1916).
[Crossref]

Briggs, H. B.

Engstrom, R. W.

Ives, H. E.

Kronig, R.

R. Kronig, Nature 133, 211 (1934).
[Crossref]

R. Kronig, Proc. Roy. Soc. (London) A124, 409 (1929);Proc. Roy. Soc. (London) 133, 255 (1931).
[Crossref]

Lukens, C.

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
[Crossref]

O’Bryan, H. M.

H. M. O’Bryan, Rev. Sci. Instr. 6, 328 (1935).
[Crossref]

Seitz, F.

F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1940), p. 641, Eqs. (38) and (39).

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), p. 515, Eqs. (23) and (24).

J. A. Stratton, reference 9, p. 506, Eq. (82).

Wood, R. W.

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
[Crossref]

R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

R. W. Wood, Phil. Mag. 38, 98 (1919).
[Crossref]

R. W. Wood, Phil. Mag. 32, 364 (1916).
[Crossref]

Zener, C.

C. Zener, Nature 132, 968 (1933).
[Crossref]

J. Opt. Soc. Am. (2)

Nature (2)

C. Zener, Nature 132, 968 (1933).
[Crossref]

R. Kronig, Nature 133, 211 (1934).
[Crossref]

Phil. Mag. (2)

R. W. Wood, Phil. Mag. 38, 98 (1919).
[Crossref]

R. W. Wood, Phil. Mag. 32, 364 (1916).
[Crossref]

Phys. Rev. (2)

R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938).
[Crossref]

Proc. Roy. Soc. (London) (1)

R. Kronig, Proc. Roy. Soc. (London) A124, 409 (1929);Proc. Roy. Soc. (London) 133, 255 (1931).
[Crossref]

Rev. Sci. Instr. (1)

H. M. O’Bryan, Rev. Sci. Instr. 6, 328 (1935).
[Crossref]

Other (4)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), p. 515, Eqs. (23) and (24).

J. A. Stratton, reference 9, p. 506, Eq. (82).

F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1940), p. 641, Eqs. (38) and (39).

The reflectivity was taken from the American Institute of Physics Handbook, edited by D. E. Gray (McGraw-Hill Book Company Inc., New York, 1957), p. 6–108.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Side view of quartz-alkali metal filter. A—Fused quartz plate; B—filler tube for liquid alkali metal; C—well 2.5-in. diam, etched 1 μ deep for liquid metal film; D—seal.

F. 2
F. 2

Spectral transmission for various alloy thicknesses. The several film thicknesses d are given in microns.

F. 3
F. 3

Reflection of the quartz-metal interface vs wavelength. Curves 1 and 4 were calculated from the values of n and k given by Ives and Briggs (reference 13), curve 2 was supplied by Dunkelman at NRL, and curve 3 was determined from measurements made by the authors.

F. 4
F. 4

Optical constants for 75% K–25% Na alloy by volume.

F. 5
F. 5

Refractive index and extinction coefficient vs normalized wavelength. — — — Potassium; —·—· Sodium; ------- Na (25%) K (75%) alloy; ——— Kronig’s Theory.

Tables (1)

Tables Icon

Table I Cutoff wavelengths (column A) from Fig. 3 compared with those (column B) calculated from Eq. (10).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

= 1 N e 2 / π m ν 2 .
n 2 = 1 2 [ ( 2 + 4 σ 2 ν 2 ) 1 2 + ] ,
k 2 = 1 2 [ ( 2 + 4 σ 2 ν 2 ) 1 2 ] ,
T [ ( 1 R 12 ) 2 + 4 R 12 sin 2 δ 12 ] e 2 β 2 d ,
β 2 = ( 2 π / λ ) k 2 ,
k 2 = λ 4 π ( d 2 d 1 ) ln T 1 T 2 .
R 12 = ( n 2 n 1 ) 2 + k 2 2 ( n 2 + n 1 ) 2 + k 2 2 ,
n 2 = n 1 { 1 + R 12 1 R 12 ± [ ( 1 + R 12 1 R 12 ) 2 n 1 2 + k 2 2 n 1 2 ] 1 2 } ,
ν 0 2 = ( e 2 / π m ) N .
ν 0 ( NaK ) = [ L K ν 0 2 ( K ) + L Na ν 0 2 ( Na ) ] 1 2 ,
= 1 ( λ / λ 0 ) 2 ,
σ / ν = n 0 2 ( λ / λ 0 ) 3 = k 0 2 ( λ / λ 0 ) 3 ,