Abstract

A prism/grating double monochromator has been made in which the grating monochromator has been ganged with a rocksalt monochromator on a linear frequency basis. Two replica gratings, each used in a single order, cover the range 650 cm−1 to 3650 cm−1. Resolution is such that peaks with a separation of 0.3 cm−1 at 950 cm−1 may be resolved. Gratings and cams and also prisms may be interchanged by operation of press buttons. Similarly the instrument may be converted to a single prism monochromator to extend the frequency range. A constant energy background is provided by magnetically operated slits programed by a tapped potentiometer. The double beam photometer uses a starwheel beam attenuator and is capable of good quantitative accuracy. The whole optical system is evacuable and a pressure of 10−3 mm Hg within the vacuum casing is satisfactory for accurate work at grating resolution.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Sleator, Astrophys. J. 48, 125 (1918).
    [Crossref]
  2. R. A. Oetjen, J. Opt. Soc. Am. 35, 743 (1945).
    [Crossref] [PubMed]
  3. R. R. McMath and O. C. Mohler, J. Opt. Soc. Am. 39, 903 (1949).
    [Crossref]
  4. C. H. Miller and H. W. Thompson, Proc. Roy. Soc. (London) A200, 1 (1949).
    [Crossref]
  5. A. R. H. Cole, J. Opt. Soc. Am. 44, 741 (1954).
    [Crossref]
  6. Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
    [Crossref]
  7. E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) A62, 205 (1949).
    [Crossref]
  8. G. D. Dew and L. A. Sayce, Proc. Roy. Soc. (London) A207, 278 (1951).
    [Crossref]
  9. G. D. Dew, J. Sci. Instr. 30, 229 (1953).
    [Crossref]
  10. G. D. Dew, J. Sci. Instr. 33, 348 (1956).
    [Crossref]
  11. E. F. Daly, Nature 171, 560 (1953).
    [Crossref]
  12. D. Shrewsbury, Spectrovision No. 6.

1958 (1)

Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
[Crossref]

1956 (1)

G. D. Dew, J. Sci. Instr. 33, 348 (1956).
[Crossref]

1954 (1)

1953 (2)

E. F. Daly, Nature 171, 560 (1953).
[Crossref]

G. D. Dew, J. Sci. Instr. 30, 229 (1953).
[Crossref]

1951 (1)

G. D. Dew and L. A. Sayce, Proc. Roy. Soc. (London) A207, 278 (1951).
[Crossref]

1949 (3)

E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) A62, 205 (1949).
[Crossref]

R. R. McMath and O. C. Mohler, J. Opt. Soc. Am. 39, 903 (1949).
[Crossref]

C. H. Miller and H. W. Thompson, Proc. Roy. Soc. (London) A200, 1 (1949).
[Crossref]

1945 (1)

1918 (1)

W. W. Sleator, Astrophys. J. 48, 125 (1918).
[Crossref]

Cole, A. R. H.

Daly, E. F.

E. F. Daly, Nature 171, 560 (1953).
[Crossref]

E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) A62, 205 (1949).
[Crossref]

Dew, G. D.

G. D. Dew, J. Sci. Instr. 33, 348 (1956).
[Crossref]

G. D. Dew, J. Sci. Instr. 30, 229 (1953).
[Crossref]

G. D. Dew and L. A. Sayce, Proc. Roy. Soc. (London) A207, 278 (1951).
[Crossref]

Ford,

Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
[Crossref]

McMath, R. R.

Miller, C. H.

C. H. Miller and H. W. Thompson, Proc. Roy. Soc. (London) A200, 1 (1949).
[Crossref]

Mohler, O. C.

Oetjen, R. A.

Price,

Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
[Crossref]

Sayce, L. A.

G. D. Dew and L. A. Sayce, Proc. Roy. Soc. (London) A207, 278 (1951).
[Crossref]

Shrewsbury, D.

D. Shrewsbury, Spectrovision No. 6.

Sleator, W. W.

W. W. Sleator, Astrophys. J. 48, 125 (1918).
[Crossref]

Sutherland, G. B. B. M.

E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) A62, 205 (1949).
[Crossref]

Thompson, H. W.

C. H. Miller and H. W. Thompson, Proc. Roy. Soc. (London) A200, 1 (1949).
[Crossref]

Wilkinson,

Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
[Crossref]

Astrophys. J. (1)

W. W. Sleator, Astrophys. J. 48, 125 (1918).
[Crossref]

J. Opt. Soc. Am. (3)

J. Sci. Instr. (3)

Ford, Price, and Wilkinson, J. Sci. Instr. 35, 55 (1958).
[Crossref]

G. D. Dew, J. Sci. Instr. 30, 229 (1953).
[Crossref]

G. D. Dew, J. Sci. Instr. 33, 348 (1956).
[Crossref]

Nature (1)

E. F. Daly, Nature 171, 560 (1953).
[Crossref]

Proc. Phys. Soc. (London) (1)

E. F. Daly and G. B. B. M. Sutherland, Proc. Phys. Soc. (London) A62, 205 (1949).
[Crossref]

Proc. Roy. Soc. (London) (2)

G. D. Dew and L. A. Sayce, Proc. Roy. Soc. (London) A207, 278 (1951).
[Crossref]

C. H. Miller and H. W. Thompson, Proc. Roy. Soc. (London) A200, 1 (1949).
[Crossref]

Other (1)

D. Shrewsbury, Spectrovision No. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

F. 1
F. 1

Optical layout of spectrometer.

F. 2
F. 2

View showing mechanical design of monochromator and photometer.

F. 3
F. 3

Single beam spectrum of the 4.3-μ band of CO2. Sample cell compartment at atmospheric pressure, path length of sample 11 cm. Scanning speed 0.5 cm−1 per minute, slit width 0.06 mm. Pressure of air in main instrument cover 10−2 mm Hg.

F. 4
F. 4

Double beam spectrum of the parallel band of NH3 at about 10.5 μ. Path length of sample 10 cm at a pressure of 10 mm Hg. Scanning speed 0.33 cm−1 per minute, slit width 0.12 mm. Pressure in main instrument cover 10−2 mm Hg.

F. 5
F. 5

Single beam trace 1500 cm−1 − 1700 cm−1 showing total water vapor absorption in optical path. Slit width 0.09 mm. Cell well evacuated by connection to backing pump for 2 minutes. Pressure in main vacuum cover less than 10−3 mm Hg. Liquid air trap in use.

F. 6
F. 6

Same conditions as in Fig. 5 but pressure in main vacuum cover about 5×10−2 mm Hg. Liquid air trap not in use.

F. 7
F. 7

Same conditions as Fig. 5. Pressure in main vacuum cover less than 10−3 mm Hg. Air at atmospheric pressure in sample cell well (11 cm path length).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ ν = ( π W 0 T P T G ( D P + D G ) A E ν g ) 1 2 ,
Γ ν ( π W 0 T P T G D G A E ν g ) 1 2 .