Abstract

Measurements have been made on evaporated thin films of Al, Sn, In, Bi, Au, Ag, and Cd in order to correlate optical transmission, reflection, and photoemission in the far ultraviolet. Thin unbacked films prepared outside the spectrograph and glass-backed films prepared inside the spectrograph were used. The frequency at which the films change from a reflecting medium to a transmitting medium has been compared with the plasma frequency predicted by Bohm and Pines and also with electron energy eigenlosses in metals observed by Marton et al. Some new absorption transitions have been observed and related to x-ray absorption edges. A qualitative correlation between the photoelectric yields and corresponding optical properties has been attempted.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Marton, Leder, and Mendlowitz, Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1955), Vol. 7;D. Pines in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.
  2. R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938);R. W. Wood, Phys. Rev. 44, 353 (1933).
    [Crossref]
  3. H. E. Ives and H. B. Briggs, J. Opt. Soc. Am. 26, 238 (1936);J. Opt. Soc. Am. 27, 181 (1937);J. Opt. Soc. Am. 27, 395 (1937).
    [Crossref]
  4. G. Sabine, Phys. Rev. 55, 1064 (1939);P. R. Gleason, Proc. Am. Acad. Arts Sci. 64, 92 (1930).
    [Crossref]
  5. Hass, Hunter, and Tousey, J. Opt. Soc. Am. 46, 1009 (1956);J. Opt. Soc. Am. 47, 120 (1957);G. Hass and A. P. Bradford, J. Opt. Soc. Am. 47, 125 (1957).
    [Crossref]
  6. C. Kenty, Phys. Rev. 44, 891 (1933).
    [Crossref]
  7. H. E. Hinteregger and K. Watanabe, J. Opt. Soc. Am. 43, 604 (1953).
    [Crossref]
  8. Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
    [Crossref]
  9. D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);Phys. Rev. 85, 338 (1952);Phys. Rev. 92, 609 (1953).
    [Crossref]
  10. F. E. Carpenter and J. A. Curcio, Rev. Sci. Instr. 21, 675 (1950).
    [Crossref]
  11. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).
  12. Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
    [Crossref]
  13. L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).
    [Crossref]
  14. D. Pines, Revs. Modern Phys. 28, 184 (1956).
    [Crossref]
  15. W. Klein, Optik 11, 226 (1954).

1956 (3)

1955 (1)

Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
[Crossref]

1954 (2)

W. Klein, Optik 11, 226 (1954).

L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).
[Crossref]

1953 (1)

1951 (1)

D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);Phys. Rev. 85, 338 (1952);Phys. Rev. 92, 609 (1953).
[Crossref]

1950 (1)

F. E. Carpenter and J. A. Curcio, Rev. Sci. Instr. 21, 675 (1950).
[Crossref]

1939 (1)

G. Sabine, Phys. Rev. 55, 1064 (1939);P. R. Gleason, Proc. Am. Acad. Arts Sci. 64, 92 (1930).
[Crossref]

1938 (1)

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938);R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

1936 (1)

1933 (1)

C. Kenty, Phys. Rev. 44, 891 (1933).
[Crossref]

Bohm, D.

D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);Phys. Rev. 85, 338 (1952);Phys. Rev. 92, 609 (1953).
[Crossref]

Briggs, H. B.

Carpenter, F. E.

F. E. Carpenter and J. A. Curcio, Rev. Sci. Instr. 21, 675 (1950).
[Crossref]

Curcio, J. A.

F. E. Carpenter and J. A. Curcio, Rev. Sci. Instr. 21, 675 (1950).
[Crossref]

Hass,

Hinteregger, H. E.

Hunter,

Ives, H. E.

Kenty, C.

C. Kenty, Phys. Rev. 44, 891 (1933).
[Crossref]

Klein, W.

W. Klein, Optik 11, 226 (1954).

Leder,

Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
[Crossref]

Marton, Leder, and Mendlowitz, Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1955), Vol. 7;D. Pines in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.

Leder, L. B.

L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).
[Crossref]

Lukens, C.

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938);R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

Marton,

Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
[Crossref]

Marton, Leder, and Mendlowitz, Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1955), Vol. 7;D. Pines in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.

Marton, L.

L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).
[Crossref]

Mendlowitz,

Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
[Crossref]

Marton, Leder, and Mendlowitz, Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1955), Vol. 7;D. Pines in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.

Pines, D.

D. Pines, Revs. Modern Phys. 28, 184 (1956).
[Crossref]

D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);Phys. Rev. 85, 338 (1952);Phys. Rev. 92, 609 (1953).
[Crossref]

Sabine, G.

G. Sabine, Phys. Rev. 55, 1064 (1939);P. R. Gleason, Proc. Am. Acad. Arts Sci. 64, 92 (1930).
[Crossref]

Tolansky, S.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).

Tousey,

Wainfan,

Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
[Crossref]

Walker,

Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
[Crossref]

Watanabe, K.

Weissler,

Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
[Crossref]

Wood, R. W.

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938);R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

J. Appl. Phys. (1)

Walker, Wainfan, and Weissler, J. Appl. Phys. 26, 1366 (1955).
[Crossref]

J. Opt. Soc. Am. (3)

Optik (1)

W. Klein, Optik 11, 226 (1954).

Phys. Rev. (6)

C. Kenty, Phys. Rev. 44, 891 (1933).
[Crossref]

Leder, Mendlowitz, and Marton, Phys. Rev. 101, 1460 (1956).
[Crossref]

L. Marton and L. B. Leder, Phys. Rev. 94, 203 (1954).
[Crossref]

G. Sabine, Phys. Rev. 55, 1064 (1939);P. R. Gleason, Proc. Am. Acad. Arts Sci. 64, 92 (1930).
[Crossref]

R. W. Wood and C. Lukens, Phys. Rev. 54, 332 (1938);R. W. Wood, Phys. Rev. 44, 353 (1933).
[Crossref]

D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951);Phys. Rev. 85, 338 (1952);Phys. Rev. 92, 609 (1953).
[Crossref]

Rev. Sci. Instr. (1)

F. E. Carpenter and J. A. Curcio, Rev. Sci. Instr. 21, 675 (1950).
[Crossref]

Revs. Modern Phys. (1)

D. Pines, Revs. Modern Phys. 28, 184 (1956).
[Crossref]

Other (2)

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).

Marton, Leder, and Mendlowitz, Advances in Electronics and Electron Physics (Academic Press, Inc., New York, 1955), Vol. 7;D. Pines in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

F. 1
F. 1

Normal incidence vacuum monochromator. A: Grating drive; B: To diffusion pump; D: Film holder assembly; E: Differential pressure chamber; F: Evaporation coil; G: Concave grating; H: Shutter; L: Light Source; P: Photomultiplier tube; R: Rowland focusing circle; S1, S2: Primary and exit slit; V: High-voltage electrode; W: Window.

F. 2
F. 2

Film holder assembly. C: Collector cylinder; F: Evaporation coil; H: Shutter; K: Shield; M: Film holder; P: Photomultiplier tube; S2: Exit slit; T: Film; W: Window.

F. 3
F. 3

Measurements on Al films. △ reflectivity, ○ photoelectric yields both from a glass backed film 430 A thick, evaporated in situ. □ Transmissivity from an unbacked film 1150 A thick, evaporated outside the monochromator. Dotted curve represents photoelectric yields from the unbacked film. Arrow down denotes the theoretical plasma frequency and arrow up the onset of optical transmission. Vertical line labeled e denotes the positions of the known electron energy eigenloss.

F. 4
F. 4

Measurements on Sn films. △ reflectivity, ○ photoelectric yields both from a glass backed film evaporated in situ. □ Transmissivity from an unbacked film 1020 A thick, evaporated outside the monochromator. Dotted curve represents photoelectric yields from the unbacked film. Arrow down denotes the theoretical plasma frequency and arrow up the onset of optical transmission. Vertical line labeled e denotes the positions of the known electron energy eigenloss. The ordinate of γ′ should be multiplied by 2.

F. 5
F. 5

Measurements on In films. △ reflectivity from a glass backed film evaporated in situ. □ transmissivity, ○ photoelectric yields from an unbacked film 800 A thick, evaporated outside the monochromator. Arrow down denotes the theoretical plasma frequency and arrow up the onset of optical transmission. Vertical line labeled e denotes the positions of the known electron energy eigenloss.

F. 6
F. 6

Measurements on Bi films. △ reflectivity, ○ photoelectric yields both from a glass backed film 300 A thick, evaporated in situ. □ Transmissivity from an unbacked film 960 A thick, evaporated outside the monochromator. Dotted curve represents photoelectric yields from the unbacked film. Arrow down denotes the theoretical plasma frequency and arrow up the onset of optical transmission. Vertical line labeled e denotes the positions of the known electron energy eigenloss.

F. 7
F. 7

Measurements on Au films. △ reflectivity from a glass backed film 200 A thick, evaporated in situ. ○ photoelectric yields from an unbacked film 600 A thick, evaporated outside the monochromator. Arrow down denotes the theoretical plasma frequency. Vertical line labeled e denotes the positions of the known electron energy eigenloss.

F. 8
F. 8

Measurements on Ag films. △ reflectivity, ○ photoelectric yields both from a glass backed film 350 A thick, evaporated in situ. Dotted curve represents photoelectric yields from an unbacked film 850 A thick, evaporated outside the monochromator. Arrow down denotes the theoretical plasma frequency. Vertical line labeled e denotes the positions of the known electron energy eigenloss. The ordinate of γ′ curve should be multiplied by 2.

F. 9
F. 9

Measurements on Cd films. △ reflectivity, ○ photoelectric yields both from an unbacked film 1000 A thick, evaporated outside the monochromator. Arrow down denotes the theoretical plasma frequency. Vertical line labeled e denotes the positions of the known electron energy eigenloss.