Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Lambert, J. Opt. Soc. Am. 48, 490 (1958) and others.
    [CrossRef]
  2. K. Sayanagi, J. Appl. Phys. (Japan) 25, 449 (1956).
  3. T. Ose (private communication).

1958 (1)

1956 (1)

K. Sayanagi, J. Appl. Phys. (Japan) 25, 449 (1956).

Lambert, R. L.

Ose, T.

T. Ose (private communication).

Sayanagi, K.

K. Sayanagi, J. Appl. Phys. (Japan) 25, 449 (1956).

J. Appl. Phys. (Japan) (1)

K. Sayanagi, J. Appl. Phys. (Japan) 25, 449 (1956).

J. Opt. Soc. Am. (1)

Other (1)

T. Ose (private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Response function of the standard observation for 35-mm photography.

Fig. 2
Fig. 2

Triangular slit to determine the origin of the optical response. The origin is obtained when the light intensity from slits A and B become equal.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R ( ν , ω ) = - r ( x , y ) exp [ - 2 π i ( ν x + ω y ) ] d x d y = R ( ν , ω ) exp [ - i φ ( ν , ω ) ] ,
φ ( ν , ω ) = tan - 1 [ R o ( ν , ω ) / R e ( ν , ω ) ] ,
R e ( o , o ) = 1 R o ( o , o ) = 0 }
r ( 0 , 0 ) = - R ( ν , ω ) d ν d ω = - R e ( ν , ω ) d ν d ω .
[ φ ( ν , ω ) ν ] ν = 0 = 0 , [ φ ( ν , ω ) ω ] ω = 0 = 0. }
- x r ( s , y ) d x d y = - x r ¯ ( x ) d x = 0 , - y r ( x , y ) d x d y = - y r ¯ ¯ ( y ) d y = 0 , }