Abstract

The solar spectral irradiance outside the earth’s atmosphere was determined by Langley’s method of extrapolation to zero air mass, from measurements taken on Mount Lemmon at an elevation of 8025 ft near Tucson, Arizona, during October, 1951. The spectrum was produced and the energy scanned by a Leiss quartz double-monochromator, detected by a 1P21 photomultiplier, amplified, and presented on a strip chart recorder. About twenty-five spectra were recorded from sunrise to noon, with band widths ranging from 10 A at 3030 A to 170 A at 7000 A. The equipment was calibrated frequently by recording the spectrum of a standard tungsten lamp. Compared with earlier work performed in this field, our results agree best with those of Pettit. There is good agreement with the direct measurements from a rocket obtained by Purcell and Tousey in 1954 and with the Sacramento Peak ultraviolet observations by Stair and Johnston in 1955. The change of solar intensity with air mass showed that the attenuation of the atmosphere above Mount Lemmon was approximately 15% higher than that for a Rayleigh atmosphere in the region 3400 A to 4650 A, where there is no absorption due to ozone. A discussion is included which emphasizes the importance of clear and constant atmospheres which are necessary to obtain accurate values of solar spectral irradiance outside the earth’s atmosphere by the Langley method. The solar illuminance computed from spectral data was 12 700 lumens/ft2.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.
  2. Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
    [Crossref]
  3. Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).
  4. C. G. Abbot, Gerlands Beitr. Geophys. 16, 4, 343 (1927).
  5. E. Pettit, Astrophys. J. 91, 159 (1940).
    [Crossref]
  6. Smithsonian Physical Tables, Ninth Revised Edition (1954), Table No. 812.
  7. R. Stair, J. Research Nat. Bur. Standards 40, 9 (1948).
    [Crossref]
  8. P. Hess, “Untersuchungen über die spektrale energieverteilung im sonnenspektrum von 350 mμ bis 500 mμ,” Inaugural-Dissertation, Universität Frankfurt a.M. (1938).
  9. H. Reiner, Gerlands Betr. Geophys. 55, 2, 234 (1939).
  10. F. W. P. Götz and E. Schönmann, Helv. Phys. Acta 21, 151 (1948).
  11. R. Stair and W. O. Smith, J. Research Natl. Bur. Standards 30, 449 (1943).
    [Crossref]
  12. H. C. Hamaker, Thesis Utrecht (1934).
  13. A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 588 (1925); Z. Physik 22, 9 (1924).
    [Crossref]
  14. F. Hoffmann and H. Willenberg, Phys. Z. 35, 1, 713 (1934).
  15. J. C. Devos, Physica 20, 690 (1954).
    [Crossref]
  16. D. M. Packer and C. Lock, J. Opt. Soc. Am. 42, 879 (1952).
  17. See reference 6, Table No. 811.
  18. F. S. Johnson, J. Meteorol. 11, 431 (1954).
    [Crossref]
  19. Purcell and Tousey (private communications).
  20. R. Stair and R. G. Johnston, J. Research Natl. Bur. Standards 57, 205 (1956).
    [Crossref]
  21. R. Stair, J. Research Natl. Bur. Standards 49, 227 (1952).
    [Crossref]
  22. Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
    [Crossref]
  23. R. V. Karandikar, J. Opt. Soc. Am. 45, 483 (1955).
    [Crossref]
  24. R. Tousey and E. O. Hulburt, J. Opt. Soc. Am. 37, 78 (1947).
    [Crossref]
  25. D. M. Packer and C. Lock, J. Opt. Soc. Am. 41, 473 (1951).
    [Crossref]
  26. Ny Tsi-Ze and Choong Shin-Piau, Compt. rend. 195, 309 (1932); Compt. rend. 196, 916 (1933).
  27. A. Vassy and E. Vassy, J. Chem. Phys. 16, 1163 (1948).
    [Crossref]
  28. Operator’s Manual for the Dobson Spectrophotometer (R. and J. Beck, Ltd., London, England).
  29. D. Deirmendjian and Z. Sekera, J. Opt. Soc. Am. 43, 1158 (1953); J. Opt. Soc. Am. 46, 565 (1956).
    [Crossref]
  30. L. Dunkelman and R. Scolnik, J. Opt. Soc. Am. 42, 876 (1952).

1956 (1)

R. Stair and R. G. Johnston, J. Research Natl. Bur. Standards 57, 205 (1956).
[Crossref]

1955 (1)

1954 (4)

Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
[Crossref]

J. C. Devos, Physica 20, 690 (1954).
[Crossref]

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

1953 (1)

1952 (3)

L. Dunkelman and R. Scolnik, J. Opt. Soc. Am. 42, 876 (1952).

D. M. Packer and C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

R. Stair, J. Research Natl. Bur. Standards 49, 227 (1952).
[Crossref]

1951 (1)

1948 (3)

A. Vassy and E. Vassy, J. Chem. Phys. 16, 1163 (1948).
[Crossref]

R. Stair, J. Research Nat. Bur. Standards 40, 9 (1948).
[Crossref]

F. W. P. Götz and E. Schönmann, Helv. Phys. Acta 21, 151 (1948).

1947 (1)

1943 (1)

R. Stair and W. O. Smith, J. Research Natl. Bur. Standards 30, 449 (1943).
[Crossref]

1940 (1)

E. Pettit, Astrophys. J. 91, 159 (1940).
[Crossref]

1939 (1)

H. Reiner, Gerlands Betr. Geophys. 55, 2, 234 (1939).

1934 (1)

F. Hoffmann and H. Willenberg, Phys. Z. 35, 1, 713 (1934).

1932 (1)

Ny Tsi-Ze and Choong Shin-Piau, Compt. rend. 195, 309 (1932); Compt. rend. 196, 916 (1933).

1927 (1)

C. G. Abbot, Gerlands Beitr. Geophys. 16, 4, 343 (1927).

1923 (1)

Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).

1917 (1)

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 588 (1925); Z. Physik 22, 9 (1924).
[Crossref]

Abbot,

Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).

Abbot, C. G.

C. G. Abbot, Gerlands Beitr. Geophys. 16, 4, 343 (1927).

Aldrich,

Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).

Bagg,

Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
[Crossref]

Deirmendjian, D.

Devos, J. C.

J. C. Devos, Physica 20, 690 (1954).
[Crossref]

Dunkelman, L.

L. Dunkelman and R. Scolnik, J. Opt. Soc. Am. 42, 876 (1952).

Fowle,

Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).

Götz, F. W. P.

F. W. P. Götz and E. Schönmann, Helv. Phys. Acta 21, 151 (1948).

Hamaker, H. C.

H. C. Hamaker, Thesis Utrecht (1934).

Hess, P.

P. Hess, “Untersuchungen über die spektrale energieverteilung im sonnenspektrum von 350 mμ bis 500 mμ,” Inaugural-Dissertation, Universität Frankfurt a.M. (1938).

Hoffmann, F.

F. Hoffmann and H. Willenberg, Phys. Z. 35, 1, 713 (1934).

Hulburt, E. O.

Johnson,

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.

Johnson, F. S.

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

Johnston,

Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
[Crossref]

Johnston, R. G.

R. Stair and R. G. Johnston, J. Research Natl. Bur. Standards 57, 205 (1956).
[Crossref]

Karandikar, R. V.

Lock, C.

D. M. Packer and C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

D. M. Packer and C. Lock, J. Opt. Soc. Am. 41, 473 (1951).
[Crossref]

Moore,

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

Packer, D. M.

D. M. Packer and C. Lock, J. Opt. Soc. Am. 42, 879 (1952).

D. M. Packer and C. Lock, J. Opt. Soc. Am. 41, 473 (1951).
[Crossref]

Pettit, E.

E. Pettit, Astrophys. J. 91, 159 (1940).
[Crossref]

Purcell,

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.

Purcell and Tousey (private communications).

Reiner, H.

H. Reiner, Gerlands Betr. Geophys. 55, 2, 234 (1939).

Schönmann, E.

F. W. P. Götz and E. Schönmann, Helv. Phys. Acta 21, 151 (1948).

Scolnik, R.

L. Dunkelman and R. Scolnik, J. Opt. Soc. Am. 42, 876 (1952).

Sekera, Z.

Shin-Piau, Choong

Ny Tsi-Ze and Choong Shin-Piau, Compt. rend. 195, 309 (1932); Compt. rend. 196, 916 (1933).

Smith, W. O.

R. Stair and W. O. Smith, J. Research Natl. Bur. Standards 30, 449 (1943).
[Crossref]

Stair,

Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
[Crossref]

Stair, R.

R. Stair and R. G. Johnston, J. Research Natl. Bur. Standards 57, 205 (1956).
[Crossref]

R. Stair, J. Research Natl. Bur. Standards 49, 227 (1952).
[Crossref]

R. Stair, J. Research Nat. Bur. Standards 40, 9 (1948).
[Crossref]

R. Stair and W. O. Smith, J. Research Natl. Bur. Standards 30, 449 (1943).
[Crossref]

Tousey,

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.

Purcell and Tousey (private communications).

Tousey, R.

Tsi-Ze, Ny

Ny Tsi-Ze and Choong Shin-Piau, Compt. rend. 195, 309 (1932); Compt. rend. 196, 916 (1933).

Vassy, A.

A. Vassy and E. Vassy, J. Chem. Phys. 16, 1163 (1948).
[Crossref]

Vassy, E.

A. Vassy and E. Vassy, J. Chem. Phys. 16, 1163 (1948).
[Crossref]

Willenberg, H.

F. Hoffmann and H. Willenberg, Phys. Z. 35, 1, 713 (1934).

Wilson,

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.

Worthing, A. G.

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 588 (1925); Z. Physik 22, 9 (1924).
[Crossref]

Astrophys. J. (2)

Wilson, Tousey, Purcell, Johnson, and Moore, Astrophys. J. 119, 590 (1954).
[Crossref]

E. Pettit, Astrophys. J. 91, 159 (1940).
[Crossref]

Compt. rend. (1)

Ny Tsi-Ze and Choong Shin-Piau, Compt. rend. 195, 309 (1932); Compt. rend. 196, 916 (1933).

Gerlands Beitr. Geophys. (1)

C. G. Abbot, Gerlands Beitr. Geophys. 16, 4, 343 (1927).

Gerlands Betr. Geophys. (1)

H. Reiner, Gerlands Betr. Geophys. 55, 2, 234 (1939).

Helv. Phys. Acta (1)

F. W. P. Götz and E. Schönmann, Helv. Phys. Acta 21, 151 (1948).

J. Chem. Phys. (1)

A. Vassy and E. Vassy, J. Chem. Phys. 16, 1163 (1948).
[Crossref]

J. Meteorol. (1)

F. S. Johnson, J. Meteorol. 11, 431 (1954).
[Crossref]

J. Opt. Soc. Am. (6)

J. Research Nat. Bur. Standards (1)

R. Stair, J. Research Nat. Bur. Standards 40, 9 (1948).
[Crossref]

J. Research Natl. Bur. Standards (4)

R. Stair and W. O. Smith, J. Research Natl. Bur. Standards 30, 449 (1943).
[Crossref]

R. Stair and R. G. Johnston, J. Research Natl. Bur. Standards 57, 205 (1956).
[Crossref]

R. Stair, J. Research Natl. Bur. Standards 49, 227 (1952).
[Crossref]

Stair, Johnston, and Bagg, J. Research Natl. Bur. Standards 53, 113 (1954).
[Crossref]

Phys. Rev. (1)

A. G. Worthing, Phys. Rev. 10, 377 (1917); Phys. Rev. 25, 588 (1925); Z. Physik 22, 9 (1924).
[Crossref]

Phys. Z. (1)

F. Hoffmann and H. Willenberg, Phys. Z. 35, 1, 713 (1934).

Physica (1)

J. C. Devos, Physica 20, 690 (1954).
[Crossref]

Smithsonian Misc. Collections (1)

Abbot, Fowle, and Aldrich, Smithsonian Misc. Collections 74, 7 (1923).

Other (7)

Johnson, Purcell, Tousey, and Wilson, Rocket Exploration of the Upper Atmosphere (Pergamon Press, London, 1954), pp. 279–288.

P. Hess, “Untersuchungen über die spektrale energieverteilung im sonnenspektrum von 350 mμ bis 500 mμ,” Inaugural-Dissertation, Universität Frankfurt a.M. (1938).

Smithsonian Physical Tables, Ninth Revised Edition (1954), Table No. 812.

See reference 6, Table No. 811.

H. C. Hamaker, Thesis Utrecht (1934).

Purcell and Tousey (private communications).

Operator’s Manual for the Dobson Spectrophotometer (R. and J. Beck, Ltd., London, England).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Solar spectral irradiance curves outside earth’s atmosphere obtained by various observers prior to 1949. The Smithsonian and Pettit curves are on an absolute scale. The curves of Reiner, Hess, and Götz and Schönmann are normalized to Pettit’s curve at approximately 4700 A. Stair’s curve is on an independent absolute scale.

Fig. 2
Fig. 2

Block diagram of the apparatus. Sunlight was introduced into the Leiss double monochromator from the magnesium carbonate block C. The block was illuminated either by sunlight, through the siderostat, or by the tungsten-in-quartz standard lamp L by interposition of mirror ML. The lamp current and voltage were monitored continuously by means of voltmeter V and ammeter A and adjusted whenever necessary by variac VA. The 1P21 multiplier phototube detector was operated at a constant 600 v obtained from the regulated high-voltage power supply HV. The phototube current was amplified by the chopper amplifier and presented on the strip chart potentiometer recorder. The dark current was subtracted by means of the bucking box B.

Fig. 3
Fig. 3

A solar trace made at noon on the strip chart recorder. An amplifier recorder zero shown by 0 was recorded before each run Another zero shown by the 0 with solidus was recorded just before a run was begun and when the amplifier was set at the highest sensitivity and the sunlight blocked momentarily to insure that the dark current was entirely subtracted. Timing marks along the top were used for wavelength registration. Typical of solar features are the calcium H and K absorptions. The sharp spikes (10n, X, Y) are sensitivity range changes, not solar features.

Fig. 4
Fig. 4

Langley plots of logarithm of photomultiplier current against air mass for both morning and afternoon of October 4, 1951. The selected wavelengths represent a region of strong ozone absorption (3118 A), a region of no ozone absorption but moderate scattering (3585 A), and a region of relatively little scattering and weak ozone absorption (4850 A). Each pair of A.M. and P.M. curves yielded nearly identical values for zero air mass. In the plot for 3118 A, the squares below the crosses and circles represent the values obtained after correcting for the curvature of the ozonosphere.

Fig. 5
Fig. 5

A comparison of the solar spectral irradiance curves obtained by Stair and Johnston at Sacramento Peak, by Purcell and Tousey from a rocket at 104-km altitude, and by the authors at Mount Lemmon. The Mount Lemmon and the Stair and Johnston curves are plotted each according to its own absolute scale. The rocket curve, which begins at 3600 A was determined in relative units, and is plotted to give the best fit.

Fig. 6
Fig. 6

A comparison of solar spectral irradiance outside the earth’s atmosphere obtained by Pettit, by the authors at Mount Lemmon in 1951, and by Stair and Johnston in 1955. The curves below 4500 A have been drawn using (1) the integrated values for the Mount Lemmon data shown in Table II, (2) the integrated distribution as determined by Stair and Johnston, and (3) the Pettit data. For wavelengths longer than 4500 A nonintegrated values are used in each case. The scales of Fig. 6 and Fig. 1 are identical and permit further comparison with the earlier workers.

Fig. 7
Fig. 7

Spectral vertical attenuation of the total atmosphere above Mount Lemmon from an elevation of 8015 feet on October 4, 1951. For comparison, the attenuation curve for a theoretically pure (Rayleigh) atmosphere of equivalent thickness (5.96 km) is shown.

Fig. 8
Fig. 8

A plot of the absorption by total ozone above Mount Lemmon vs the Ny and Choong exponential absorption coefficients which yields the amount of ozone above Mount Lemmon on October 4, 1951.

Fig. 9
Fig. 9

Langley plots revealing errors introduced when the atmosphere is neither Rayleigh-like nor constant. In each plot there is shown the point for zero atmosphere for the particular wavelength as determined from the October 4, 1951 data.

Tables (3)

Tables Icon

Table I Solar spectral irradiance data. The wavelength λ is in angstroms and the zero air mass spectral irradiance Hλ is in μw cm−2 A−1. The sun is at the mean solar distance.

Tables Icon

Table II Integrated solar spectral irradiance data. The wavelength λ is in angstroms and the zero air mass spectral irradiance Hλ is in μw cm−2 A−1. The integrated values were obtained by averaging the detailed solar distribution data over a 100-A interval taking points separated by 10 A.

Tables Icon

Table III Spectral exponential attenuation coefficients of the total vertical atmosphere above Mount Lemmon on October 4, 1951. The wavelength λ is in angstroms and the attenuation coefficient σ is to the base e for an equivalent atmospheric thickness of 5.96 km.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e - σ m ,
H s ( λ ) = i 0 ( λ ) H A ( λ ) / i A ( λ ) ,
ln ( I / I 0 ) = - σ m .
ln ( I / I 0 ) = - a m + b ,
σ = a - b / m .
= 0.0201 / 0.1394 = 0.144.