Abstract

A vacuum ultraviolet monochromator has been combined with a mass spectrometer to study photoionization processes between 1570 and 430 A. Monochromatic photons were used to ionize, A, He, Ne, O2, N2, CO, NO, CO2, N2O, and NO2; and preliminary measurements of ion intensity as a function of photon energy have been obtained for the parent ions together with their fragments. The appearance of ionization and the structure of curves, in which ions per unit photon flux versus λ are plotted, will be related to previously reported energy levels, to photoionization cross sections, and to dissociative photoionization mechanisms.

© 1959 Optical Society of America

Full Article  |  PDF Article

Corrections

G. L. Weissler, J. A. R. Samson, M. Ogawa, and G. R. Cook, "Errata," J. Opt. Soc. Am. 49, 736-736 (1959)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-49-7-736

References

  • View by:
  • |
  • |
  • |

  1. G. L. Weissler, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. XXI.
  2. L. B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, California, 1955), Chap. 9.
  3. M. Nicolet, Handbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. IL; S. K. Mitra, The Upper Atmosphere (Hafner Publishing Company, Inc., New York, 1952), second revised edition; M. Zelikoff, editor, The Threshold of Space (Pergamon Press, Inc., London, 1957).
  4. G. P. Kuiper, editor, The Solar System (University of Chicago Press, Chicago, Illinois, 1953), Vol. 2, “The earth as a planet.”
  5. G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition.
  6. R. F. Herzog and F. F. Marmo, J. Chem. Phys. 27, 1202 (1957).
    [Crossref]
  7. E. Schönheit, Z. Physik 149, 153 (1957).
    [Crossref]
  8. F. P. Lossing and I. Tanaka, J. Chem. Phys. 25, 1031 (1956); W. M. Brubaker (private communication).
    [Crossref]
  9. Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
    [Crossref]
  10. M. Seya, Sci. of Light (Tokyo) 2, 8 (1952); T. Namioka, Sci. of Light (Tokyo) 3, 15 (1954).
  11. A Consolidated Electrodynamics Corporation mass spectrometer, Model 21-201. The donation of this instrument by the University’s Medical School and by the Attending Staff Association of the L. A. County Hospital to this research project in the Department of Physics is hereby gratefully acknowledged.
  12. Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
    [Crossref]
  13. Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951).
    [Crossref]
  14. Walker, Samson, and Rustgi, J. Opt. Soc. Am. 48, 71 (1958).
    [Crossref]
  15. H. D. Hagstrum, Revs. Modern Phys. 23, 185 (1951).
    [Crossref]
  16. C. E. Berry, Phys. Rev. 78, 597 (1950).
  17. M. G. Inghram and R. J. Hayden, “A handbook on mass spectroscopy,” National Research Council, Washington, 1954 (.)
    [Crossref]
  18. Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
    [Crossref]
  19. L. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
    [Crossref]
  20. J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).
    [Crossref]
  21. K. Watanabe, J. Chem. Phys. 26, 542 (1957).
  22. D. C. Frost and C. A. McDowell (private communication).
    [Crossref]
  23. W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
    [Crossref]
  24. Y. Tanaka and T. Takamine, Phys. Rev. 59, 771 (1941), Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 437 (1942).
    [Crossref]
  25. H. D. Hagstrum, J. Chem. Phys. 23, 1178 (1955).
  26. R. Thorburn, Report of Conference on Applied Mass Spectroscopy (Institute of Petroleum, London, 1955), p. 185.
    [Crossref]
  27. K. J. Laidler and E. Kerry Gill, Trans. Faraday Soc. 54, 633 (1958).
  28. D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A232, 227 (1955).
    [Crossref]
  29. R. E. Fox and W. M. Hickam, J. Chem. Phys. 22, 2059 (1954).
    [Crossref]
  30. R. E. Worley, Phys. Rev. 64, 207 (1943).
    [Crossref]
  31. R. E. Worley, Phys. Rev. 89, 863 (1953).
  32. Y. Tanaka and T. Takamine, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 427 (1942).
  33. D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A236, 278 (1956).
    [Crossref]
  34. E. M. Clarke, Can. J. Phys. 32, 764 (1954).
    [Crossref]
  35. J. F. Burns, J. Chem. Phys. 23, 1347 (1955).
    [Crossref]
  36. J. M. Hendrie, J. Chem. Phys. 22, 1503 (1954).
  37. E. Gustafsson and E. Lindholm (private communication).
  38. F. H. Field and J. L. Franklin, Electron Impact Phenomena (Academic Press, Inc., New York, 1957).
    [Crossref]
  39. E. Miescher, Can. J. Phys. 23, 355 (1955).
  40. Y. Tanaka, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
  41. M. Ogawa, Sci. of Light (Tokyo) 3, 39 (1954).
  42. Y. Tanaka, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, 447 (1942).
  43. Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).
  44. E. Lindholm, Arkiv Fysik 8, 433 (1954).
    [Crossref]
  45. H. J. Henning, Ann. Physik 13, 599 (1932).
    [Crossref]
  46. J. L. Franklin and H. E. Lumpkin, J. Am. Chem. Soc. 74, 1023 (1952).
    [Crossref]
  47. Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).
  48. E. Lindholm, Z. Naturforsch. 9a, 535 (1954).
    [Crossref]
  49. J. Collin and F. P. Lossing, J. Chem. Phys. 28, 900 (1958).
    [Crossref]
  50. H. D. Smyth, Revs. Modern Phys. 3, 347 (1931).
    [Crossref]
  51. R. J. Kandel, J. Chem. Phys. 23, 84 (1955).
  52. R. J. Kandel, Phys. Rev. 91, 436 (1953).
  53. G. Collins, Bull soc. roy. sci., Liège 23, 194 (1954).
    [Crossref]
  54. W. C. Price and D. M. Simpson, Trans. Faraday Soc. 37, 106 (1941).
    [Crossref]

1958 (5)

Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
[Crossref]

Walker, Samson, and Rustgi, J. Opt. Soc. Am. 48, 71 (1958).
[Crossref]

K. J. Laidler and E. Kerry Gill, Trans. Faraday Soc. 54, 633 (1958).

Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).

J. Collin and F. P. Lossing, J. Chem. Phys. 28, 900 (1958).
[Crossref]

1957 (3)

K. Watanabe, J. Chem. Phys. 26, 542 (1957).

R. F. Herzog and F. F. Marmo, J. Chem. Phys. 27, 1202 (1957).
[Crossref]

E. Schönheit, Z. Physik 149, 153 (1957).
[Crossref]

1956 (2)

F. P. Lossing and I. Tanaka, J. Chem. Phys. 25, 1031 (1956); W. M. Brubaker (private communication).
[Crossref]

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A236, 278 (1956).
[Crossref]

1955 (7)

J. F. Burns, J. Chem. Phys. 23, 1347 (1955).
[Crossref]

H. D. Hagstrum, J. Chem. Phys. 23, 1178 (1955).

E. Miescher, Can. J. Phys. 23, 355 (1955).

Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
[Crossref]

L. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
[Crossref]

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A232, 227 (1955).
[Crossref]

R. J. Kandel, J. Chem. Phys. 23, 84 (1955).

1954 (7)

G. Collins, Bull soc. roy. sci., Liège 23, 194 (1954).
[Crossref]

E. Lindholm, Z. Naturforsch. 9a, 535 (1954).
[Crossref]

R. E. Fox and W. M. Hickam, J. Chem. Phys. 22, 2059 (1954).
[Crossref]

M. Ogawa, Sci. of Light (Tokyo) 3, 39 (1954).

E. Lindholm, Arkiv Fysik 8, 433 (1954).
[Crossref]

J. M. Hendrie, J. Chem. Phys. 22, 1503 (1954).

E. M. Clarke, Can. J. Phys. 32, 764 (1954).
[Crossref]

1953 (4)

R. E. Worley, Phys. Rev. 89, 863 (1953).

J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).
[Crossref]

Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
[Crossref]

R. J. Kandel, Phys. Rev. 91, 436 (1953).

1952 (2)

M. Seya, Sci. of Light (Tokyo) 2, 8 (1952); T. Namioka, Sci. of Light (Tokyo) 3, 15 (1954).

J. L. Franklin and H. E. Lumpkin, J. Am. Chem. Soc. 74, 1023 (1952).
[Crossref]

1951 (2)

1950 (1)

C. E. Berry, Phys. Rev. 78, 597 (1950).

1943 (2)

R. E. Worley, Phys. Rev. 64, 207 (1943).
[Crossref]

Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).

1942 (3)

Y. Tanaka, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, 447 (1942).

Y. Tanaka, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).

Y. Tanaka and T. Takamine, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 427 (1942).

1941 (2)

Y. Tanaka and T. Takamine, Phys. Rev. 59, 771 (1941), Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 437 (1942).
[Crossref]

W. C. Price and D. M. Simpson, Trans. Faraday Soc. 37, 106 (1941).
[Crossref]

1935 (1)

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

1932 (1)

H. J. Henning, Ann. Physik 13, 599 (1932).
[Crossref]

1931 (1)

H. D. Smyth, Revs. Modern Phys. 3, 347 (1931).
[Crossref]

Berry, C. E.

C. E. Berry, Phys. Rev. 78, 597 (1950).

Branscomb, L. M.

L. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
[Crossref]

Burns, J. F.

J. F. Burns, J. Chem. Phys. 23, 1347 (1955).
[Crossref]

Clarke, E. M.

E. M. Clarke, Can. J. Phys. 32, 764 (1954).
[Crossref]

Cohen, E. R.

J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).
[Crossref]

Collin, J.

J. Collin and F. P. Lossing, J. Chem. Phys. 28, 900 (1958).
[Crossref]

Collins, G.

G. Collins, Bull soc. roy. sci., Liège 23, 194 (1954).
[Crossref]

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

DuMond, J. W. M.

J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).
[Crossref]

Field, F. H.

F. H. Field and J. L. Franklin, Electron Impact Phenomena (Academic Press, Inc., New York, 1957).
[Crossref]

Fox, R. E.

R. E. Fox and W. M. Hickam, J. Chem. Phys. 22, 2059 (1954).
[Crossref]

Franklin, J. L.

J. L. Franklin and H. E. Lumpkin, J. Am. Chem. Soc. 74, 1023 (1952).
[Crossref]

F. H. Field and J. L. Franklin, Electron Impact Phenomena (Academic Press, Inc., New York, 1957).
[Crossref]

Frost, D. C.

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A236, 278 (1956).
[Crossref]

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A232, 227 (1955).
[Crossref]

D. C. Frost and C. A. McDowell (private communication).
[Crossref]

Gustafsson, E.

E. Gustafsson and E. Lindholm (private communication).

Hagstrum, H. D.

H. D. Hagstrum, J. Chem. Phys. 23, 1178 (1955).

H. D. Hagstrum, Revs. Modern Phys. 23, 185 (1951).
[Crossref]

Hayden, R. J.

M. G. Inghram and R. J. Hayden, “A handbook on mass spectroscopy,” National Research Council, Washington, 1954 (.)
[Crossref]

Hendrie, J. M.

J. M. Hendrie, J. Chem. Phys. 22, 1503 (1954).

Henning, H. J.

H. J. Henning, Ann. Physik 13, 599 (1932).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition.

Herzog, R. F.

R. F. Herzog and F. F. Marmo, J. Chem. Phys. 27, 1202 (1957).
[Crossref]

Hickam, W. M.

R. E. Fox and W. M. Hickam, J. Chem. Phys. 22, 2059 (1954).
[Crossref]

Hurzeler,

Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
[Crossref]

Inghram,

Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
[Crossref]

Inghram, M. G.

M. G. Inghram and R. J. Hayden, “A handbook on mass spectroscopy,” National Research Council, Washington, 1954 (.)
[Crossref]

Iwata,

Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).

Johnson,

Jursa,

Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).

Kandel, R. J.

R. J. Kandel, J. Chem. Phys. 23, 84 (1955).

R. J. Kandel, Phys. Rev. 91, 436 (1953).

Kerry Gill, E.

K. J. Laidler and E. Kerry Gill, Trans. Faraday Soc. 54, 633 (1958).

Laidler, K. J.

K. J. Laidler and E. Kerry Gill, Trans. Faraday Soc. 54, 633 (1958).

LeBlanc,

Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).

Lindholm, E.

E. Lindholm, Z. Naturforsch. 9a, 535 (1954).
[Crossref]

E. Lindholm, Arkiv Fysik 8, 433 (1954).
[Crossref]

E. Gustafsson and E. Lindholm (private communication).

Loeb, L. B.

L. B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, California, 1955), Chap. 9.

Lossing, F. P.

J. Collin and F. P. Lossing, J. Chem. Phys. 28, 900 (1958).
[Crossref]

F. P. Lossing and I. Tanaka, J. Chem. Phys. 25, 1031 (1956); W. M. Brubaker (private communication).
[Crossref]

Lumpkin, H. E.

J. L. Franklin and H. E. Lumpkin, J. Am. Chem. Soc. 74, 1023 (1952).
[Crossref]

Marmo, F. F.

R. F. Herzog and F. F. Marmo, J. Chem. Phys. 27, 1202 (1957).
[Crossref]

McDowell, C. A.

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A236, 278 (1956).
[Crossref]

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A232, 227 (1955).
[Crossref]

D. C. Frost and C. A. McDowell (private communication).
[Crossref]

Miescher, E.

E. Miescher, Can. J. Phys. 23, 355 (1955).

Morrison,

Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
[Crossref]

Nicolet, M.

M. Nicolet, Handbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. IL; S. K. Mitra, The Upper Atmosphere (Hafner Publishing Company, Inc., New York, 1952), second revised edition; M. Zelikoff, editor, The Threshold of Space (Pergamon Press, Inc., London, 1957).

Ogawa, M.

M. Ogawa, Sci. of Light (Tokyo) 3, 39 (1954).

Price, W. C.

W. C. Price and D. M. Simpson, Trans. Faraday Soc. 37, 106 (1941).
[Crossref]

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

Rustgi,

Samson,

Schönheit, E.

E. Schönheit, Z. Physik 149, 153 (1957).
[Crossref]

Seya, M.

M. Seya, Sci. of Light (Tokyo) 2, 8 (1952); T. Namioka, Sci. of Light (Tokyo) 3, 15 (1954).

Simpson, D. M.

W. C. Price and D. M. Simpson, Trans. Faraday Soc. 37, 106 (1941).
[Crossref]

Smith, S. J.

L. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
[Crossref]

Smyth, H. D.

H. D. Smyth, Revs. Modern Phys. 3, 347 (1931).
[Crossref]

Takamine,

Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).

Takamine, T.

Y. Tanaka and T. Takamine, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 427 (1942).

Y. Tanaka and T. Takamine, Phys. Rev. 59, 771 (1941), Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 437 (1942).
[Crossref]

Tanaka,

Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).

Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).

Tanaka, I.

F. P. Lossing and I. Tanaka, J. Chem. Phys. 25, 1031 (1956); W. M. Brubaker (private communication).
[Crossref]

Tanaka, Y.

Y. Tanaka, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, 447 (1942).

Y. Tanaka, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).

Y. Tanaka and T. Takamine, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 427 (1942).

Y. Tanaka and T. Takamine, Phys. Rev. 59, 771 (1941), Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 437 (1942).
[Crossref]

Thorburn, R.

R. Thorburn, Report of Conference on Applied Mass Spectroscopy (Institute of Petroleum, London, 1955), p. 185.
[Crossref]

Tousey,

Wainfan,

Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
[Crossref]

Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
[Crossref]

Walker,

Walker, Samson, and Rustgi, J. Opt. Soc. Am. 48, 71 (1958).
[Crossref]

Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
[Crossref]

Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
[Crossref]

Watanabe,

Watanabe, K.

K. Watanabe, J. Chem. Phys. 26, 542 (1957).

Weissler,

Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
[Crossref]

Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
[Crossref]

Weissler, G. L.

G. L. Weissler, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. XXI.

Worley, R. E.

R. E. Worley, Phys. Rev. 89, 863 (1953).

R. E. Worley, Phys. Rev. 64, 207 (1943).
[Crossref]

Ann. Physik (1)

H. J. Henning, Ann. Physik 13, 599 (1932).
[Crossref]

Arkiv Fysik (1)

E. Lindholm, Arkiv Fysik 8, 433 (1954).
[Crossref]

Bull soc. roy. sci., Liège (1)

G. Collins, Bull soc. roy. sci., Liège 23, 194 (1954).
[Crossref]

Can. J. Phys. (2)

E. Miescher, Can. J. Phys. 23, 355 (1955).

E. M. Clarke, Can. J. Phys. 32, 764 (1954).
[Crossref]

J. Am. Chem. Soc. (1)

J. L. Franklin and H. E. Lumpkin, J. Am. Chem. Soc. 74, 1023 (1952).
[Crossref]

J. Appl. Phys. (1)

Wainfan, Walker, and Weissler, J. Appl. Phys. 24, 1318 (1953); Phys. Rev. 99, 542 (1955).
[Crossref]

J. Chem. Phys. (11)

R. F. Herzog and F. F. Marmo, J. Chem. Phys. 27, 1202 (1957).
[Crossref]

F. P. Lossing and I. Tanaka, J. Chem. Phys. 25, 1031 (1956); W. M. Brubaker (private communication).
[Crossref]

Hurzeler, Inghram, and Morrison, J. Chem. Phys. 28, 76 (1958).
[Crossref]

J. F. Burns, J. Chem. Phys. 23, 1347 (1955).
[Crossref]

J. M. Hendrie, J. Chem. Phys. 22, 1503 (1954).

R. E. Fox and W. M. Hickam, J. Chem. Phys. 22, 2059 (1954).
[Crossref]

K. Watanabe, J. Chem. Phys. 26, 542 (1957).

H. D. Hagstrum, J. Chem. Phys. 23, 1178 (1955).

Tanaka, Jursa, and LeBlanc, J. Chem. Phys. 28, 350 (1958).

J. Collin and F. P. Lossing, J. Chem. Phys. 28, 900 (1958).
[Crossref]

R. J. Kandel, J. Chem. Phys. 23, 84 (1955).

J. Opt. Soc. Am. (2)

Phys. Rev. (8)

C. E. Berry, Phys. Rev. 78, 597 (1950).

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

Y. Tanaka and T. Takamine, Phys. Rev. 59, 771 (1941), Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 437 (1942).
[Crossref]

Wainfan, Walker, and Weissler, Phys. Rev. 99, 542 (1955).
[Crossref]

L. M. Branscomb and S. J. Smith, Phys. Rev. 98, 1127 (1955).
[Crossref]

R. E. Worley, Phys. Rev. 64, 207 (1943).
[Crossref]

R. E. Worley, Phys. Rev. 89, 863 (1953).

R. J. Kandel, Phys. Rev. 91, 436 (1953).

Proc. Roy. Soc. (London) (2)

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A232, 227 (1955).
[Crossref]

D. C. Frost and C. A. McDowell, Proc. Roy. Soc. (London) A236, 278 (1956).
[Crossref]

Revs. Modern Phys. (3)

H. D. Smyth, Revs. Modern Phys. 3, 347 (1931).
[Crossref]

J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).
[Crossref]

H. D. Hagstrum, Revs. Modern Phys. 23, 185 (1951).
[Crossref]

Sci. of Light (Tokyo) (2)

M. Seya, Sci. of Light (Tokyo) 2, 8 (1952); T. Namioka, Sci. of Light (Tokyo) 3, 15 (1954).

M. Ogawa, Sci. of Light (Tokyo) 3, 39 (1954).

Sci. Papers Inst. Phys. Chem. Research (Tokyo) (1)

Y. Tanaka, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 39, 447 (1942).

Sci. Papers, Inst. Phys. Chem. Research (Tokyo) (3)

Takamine, Tanaka, and Iwata, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 40, 371 (1943).

Y. Tanaka, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).

Y. Tanaka and T. Takamine, Sci. Papers, Inst. Phys. Chem. Research (Tokyo) 39, 427 (1942).

Trans. Faraday Soc. (2)

K. J. Laidler and E. Kerry Gill, Trans. Faraday Soc. 54, 633 (1958).

W. C. Price and D. M. Simpson, Trans. Faraday Soc. 37, 106 (1941).
[Crossref]

Z. Naturforsch. (1)

E. Lindholm, Z. Naturforsch. 9a, 535 (1954).
[Crossref]

Z. Physik (1)

E. Schönheit, Z. Physik 149, 153 (1957).
[Crossref]

Other (11)

M. G. Inghram and R. J. Hayden, “A handbook on mass spectroscopy,” National Research Council, Washington, 1954 (.)
[Crossref]

A Consolidated Electrodynamics Corporation mass spectrometer, Model 21-201. The donation of this instrument by the University’s Medical School and by the Attending Staff Association of the L. A. County Hospital to this research project in the Department of Physics is hereby gratefully acknowledged.

G. L. Weissler, Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. XXI.

L. B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, California, 1955), Chap. 9.

M. Nicolet, Handbuch der Physik (Springer-Verlag, Berlin, 1958), Vol. IL; S. K. Mitra, The Upper Atmosphere (Hafner Publishing Company, Inc., New York, 1952), second revised edition; M. Zelikoff, editor, The Threshold of Space (Pergamon Press, Inc., London, 1957).

G. P. Kuiper, editor, The Solar System (University of Chicago Press, Chicago, Illinois, 1953), Vol. 2, “The earth as a planet.”

G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition.

E. Gustafsson and E. Lindholm (private communication).

F. H. Field and J. L. Franklin, Electron Impact Phenomena (Academic Press, Inc., New York, 1957).
[Crossref]

D. C. Frost and C. A. McDowell (private communication).
[Crossref]

R. Thorburn, Report of Conference on Applied Mass Spectroscopy (Institute of Petroleum, London, 1955), p. 185.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Vacuum monochromator and mass spectrometer. A, electron multiplier ion detector; B, photomultiplier radiation monitor; C, ion beam; D, G, I, O, to pumping systems; E, ion chamber; F, permanent magnet; H, monochromator exit slit; J, light source; K, monochromator entrance slit; L, grating turntable; M, grating; N, Seya type vacuum monochromator.

Fig. 2
Fig. 2

Shape of light pulse from the 686-A NIII source emission line.

Fig. 3
Fig. 3

The effect on the electron multiplier output due to impinging CO2+ and CO+ ions at various energies. The CO+ ordinate is magnified by a factor of ten. The ion energy scale refers to the energy an ion obtains by falling through the accelerating voltage of the ion source plus a constant 2600 volts gained on entering the electron multiplier.

Fig. 4
Fig. 4

The effect on the electron multiplier output due to impinging O+2 and O+ ions at various energies. The O+ ordinate is magnified by a factor of ten. The ion energy scale refers to the energy an ion obtains by falling through the accelerating voltage of the ion source plus a constant 2600 volts gained on entering the electron multiplier.

Fig. 5
Fig. 5

A+ yield per incident photon from the photoionization of A. The vertical arrow indicates the ionization limit of argon at 15.75 ev. Argon was used in the light source.

Fig. 6
Fig. 6

He+ yield per incident photon from the photoionization of He. The vertical arrow indicates the ionization limit of helium at 24.56 ev. Argon was used in the light source.

Fig. 7
Fig. 7

(Ne20)+ and (Ne22)+ yields per incident photon from the photoionization of Ne of natural isotopic abundance. The vertical arrow indicates the ionization limit of neon at 21.55 ev. Argon was used in the light source.

Fig. 8
Fig. 8

O2+ and O+ yields per incident photon from the photoionization of O2. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table III, column two. An air-helium mixture was used in the light source.

Fig. 9
Fig. 9

Potential energy curves of O2. The curves were constructed by using the Morse function (see reference 5, p. 101). The broken curve was suggested by Laidler and Gill (see reference 26), with the dissociation products O+*(2D) and O(2P) appearing at 20.52 ev.

Fig. 10
Fig. 10

N2+ and N+ yields per incident photon from the photoionization of N2. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table V, column two. The solid curve of N2+ was obtained using an air-helium mixture, while the dashed curve and the N+ curve were obtained using argon in the light source.

Fig. 11
Fig. 11

NO+, O+, and N+ yields per incident photon from the photoionization of NO. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table VII, column two. An air-helium mixture was used in the light source.

Fig. 12
Fig. 12

(C12O)+, (C13O)+, and C+ yields per incident photon from the photoionization of CO. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table IX, column two. Argon was used in the light source.

Fig. 13
Fig. 13

CO2+, CO+, and O+ yields per incident photon from the photoionization of CO2. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table XI, column one. The single vertical arrow pointing upwards represents an experimental point at 10.2 on the ordinate axis. An air-helium mixture was used in the light source.

Fig. 14
Fig. 14

N2O+, NO+, O+, N2+, and N+ yields per incident photon from the photoionization of N2O. The vertical arrows indicate first and higher ionization limits, the values of which are given in Table XIII, column three. An air-helium mixture was used in the light source.

Fig. 15
Fig. 15

NO2+, NO+, and O+ yields per incident photon from the photoionization of NO2. An air-helium mixture was used in the light source.

Tables (17)

Tables Icon

Table I Monochromator wavelengths.

Tables Icon

Table II The heats of formation and ionization potentials of some atoms and molecules.

Tables Icon

Table III Appearance potentials of O2+.

Tables Icon

Table IV Appearance potentials of O+ ions from dissociative ionization of O2.

Tables Icon

Table V Appearance potentials of N2+.

Tables Icon

Table VI Appearance potential of N+ from dissociative ionization of N2.

Tables Icon

Table VII Appearance potentials of NO+.

Tables Icon

Table VIII Appearance potentials of O+ and N+ from dissociative ionization of NO.

Tables Icon

Table IX Appearance potentials of CO+.

Tables Icon

Table X Appearance potentials of C+ from dissociative ionization of CO.

Tables Icon

Table XI Appearance potentials of CO2+.

Tables Icon

Table XII Appearance potentials of O+ and CO+ from dissociative ionization of CO2.

Tables Icon

Table XIII Appearance potentials of N2O+.

Tables Icon

Table XIV Appearance potentials of N2+ and O+ from dissociative ionization of N2O.

Tables Icon

Table XV Appearance potentials of NO+ and N+ from dissociative ionization of N2O.

Tables Icon

Table XVI Appearance potentials of NO2+.

Tables Icon

Table XVII Appearance potentials for O+ and NO+ from dissociative ionization of NO2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A ( O + ) A ( O 2 + ) = σ i ( O + ) σ i ( O 2 + )
σ i ( total ) = σ i ( O 2 + ) + σ i ( O + ) .
A 0 ( X + ) = D ( X Y ) + I ( X ) + E e ( X + ) + E e ( Y ) ,
A . P . ( N 2 + ) = D ( N 2 O ) - D ( N 2 ) + I ( N 2 )
A . P . ( O + ) = D ( N 2 O ) - D ( N 2 ) + I ( O ) ,
N 2 O + : NO + : N 2 + : N + : O + = 1.0 : 1.7 : 0.3 : 0.2 : 0.2.