Abstract

A determination of the refractive indices of thin films of oxygen, nitrogen, carbon dioxide, water, argon, neon, and krypton condensed at 4.2°K was made. These were obtained for the 5461 A line of Hg with an ellipsometer. Similar measurements were also made on films of these gases condensed after passage through a microwave discharge. With the exception of N2 and Kr, measurable differences in refractive indices were observed between films condensed from discharged and undischarged gases.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Broida, Ann. N. Y. Acad. Sci. 67, 530 (1951).
    [CrossRef]
  2. O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths Scientific Publications, London, 1955).
  3. A. B. Winterbottom, Pittsburgh International Conference on Surface Reactions (Corrosion Publishing Company, Pittsburgh, 1948), p. 91.
  4. A. Rothen, Rev. Sci. Instr. 28, 283 (1957).
    [CrossRef]
  5. Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
    [CrossRef]
  6. A. T. Gwathmey and F. W. Young, Rev. Met. 48, 434 (1951).
  7. H. S. Peiser (private communication).

1958 (1)

Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
[CrossRef]

1957 (1)

A. Rothen, Rev. Sci. Instr. 28, 283 (1957).
[CrossRef]

1951 (2)

H. P. Broida, Ann. N. Y. Acad. Sci. 67, 530 (1951).
[CrossRef]

A. T. Gwathmey and F. W. Young, Rev. Met. 48, 434 (1951).

Broida,

Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
[CrossRef]

Broida, H. P.

H. P. Broida, Ann. N. Y. Acad. Sci. 67, 530 (1951).
[CrossRef]

Gwathmey, A. T.

A. T. Gwathmey and F. W. Young, Rev. Met. 48, 434 (1951).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths Scientific Publications, London, 1955).

Kuentzel,

Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
[CrossRef]

Peiser, H. S.

H. S. Peiser (private communication).

Rothen, A.

A. Rothen, Rev. Sci. Instr. 28, 283 (1957).
[CrossRef]

Schoen,

Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
[CrossRef]

Winterbottom, A. B.

A. B. Winterbottom, Pittsburgh International Conference on Surface Reactions (Corrosion Publishing Company, Pittsburgh, 1948), p. 91.

Young, F. W.

A. T. Gwathmey and F. W. Young, Rev. Met. 48, 434 (1951).

Ann. N. Y. Acad. Sci. (1)

H. P. Broida, Ann. N. Y. Acad. Sci. 67, 530 (1951).
[CrossRef]

Rev. Met. (1)

A. T. Gwathmey and F. W. Young, Rev. Met. 48, 434 (1951).

Rev. Sci. Instr. (2)

A. Rothen, Rev. Sci. Instr. 28, 283 (1957).
[CrossRef]

Schoen, Kuentzel, and Broida, Rev. Sci. Instr. 29, 633 (1958).
[CrossRef]

Other (3)

O. S. Heavens, Optical Properties of Thin Solid Films (Butter-worths Scientific Publications, London, 1955).

A. B. Winterbottom, Pittsburgh International Conference on Surface Reactions (Corrosion Publishing Company, Pittsburgh, 1948), p. 91.

H. S. Peiser (private communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

Apparatus for making optical measurements on thin films of gases condensed at low temperatures after passage through a microwave discharge.

F. 2
F. 2

A comparison between the polar plot of tanψ vs Δ computed for n2=1.24 and the plot obtained experimentally for films of undischarged oxygen condensed on a gold mirror at 4°K.

Tables (2)

Tables Icon

Table I Refractive indices of thin films of gases condensed on a gold mirror. Wavelength 5461 A.

Tables Icon

Table II Theoretical values of Δ and ψ for various thicknesses of transparent films on a bulk gold substrate in vacuo. Wavelength of light 5460.73 A. Refractive index of gold 0.76773–2.084691i. Angle of incidence 60°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( tan ψ ) e i Δ ρ = r p 21 + r p 32 exp X 1 + r p 21 r p 32 exp X r n 21 + r n 32 exp X 1 + r n 21 r n 32 exp X . r p 21 = n 2 cos φ 1 n 1 cos φ 2 n 2 cos φ 1 + n 1 cos φ 2 r n 21 = n 1 cos φ 1 n 2 cos φ 2 n 1 cos φ 1 + n 2 cos φ 2 r p 32 = n 3 cos φ 2 n 2 cos φ 3 n 3 cos φ 2 + n 2 cos φ 3 r n 32 = n 2 cos φ 2 n 3 cos φ 3 n 2 cos φ 2 + n 3 cos φ 3 X = 4 π i n 2 cos φ 2 λ d ,
ρ = n 3 2 cos φ 3 n 3 + 2 cos φ 3 · 1 + 2 n 3 cos φ 3 1 2 n 3 cos φ 3
cos φ 3 = ( 1 sin 2 ( π / 3 ) n 3 2 ) 1 2 .
n 3 = tan φ 1 [ 1 4 ρ 0 sin 2 φ 1 ( ρ 0 + 1 ) 2 ] 1 2 .