Abstract

An experimental procedure is described for producing thin films of binary alloys by evaporation and condensation in a vacuum. The components of the desired alloy are evaporated successively and the alloy is then produced by diffusion. A feature of the method is the use of a rotating modulator located between the vapor source and the substrate which controls the relative thickness of the deposit. During the first evaporation a uniform gradient of one metal is deposited. The substrate is then rotated 180° in its own plane and a gradient of another material is superposed. This results in a sample of approximately uniform thickness with pure metal components at the ends and with a composition gradient in between. The procedure is easily extended to permit the production in one evaporation of several samples having different thicknesses. An annealing treatment is usually helpful in promoting diffusion. Representative results on several alloys are described.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Schulz, Advances in Phys. 6, 102 (1957).
    [Crossref]
  2. L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).
    [Crossref]
  3. H. Koenig, Reichsber. Physik 1, 7 (1944).
  4. M. Goldsztaub and P. Michel, C. R. Acad. Sci. (Paris) 232, 1843 (1951).
  5. H. S. Coleman and H. L. Yeagley, Trans. Am. Soc. Metal,  31, 105 (1943).
  6. L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1956).
  7. L. G. Schulz, J. Opt. Soc. Am. 44, 540 (1954).
    [Crossref]
  8. R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, Inc., New York, 1951).
  9. M. Hansen, Der Aufbau der Zweistofflegierungen (Edwards Brothers, Inc., Ann Arbor, Michigan, 1943).

1957 (1)

L. G. Schulz, Advances in Phys. 6, 102 (1957).
[Crossref]

1954 (1)

1951 (1)

M. Goldsztaub and P. Michel, C. R. Acad. Sci. (Paris) 232, 1843 (1951).

1948 (1)

L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).
[Crossref]

1944 (1)

H. Koenig, Reichsber. Physik 1, 7 (1944).

1943 (1)

H. S. Coleman and H. L. Yeagley, Trans. Am. Soc. Metal,  31, 105 (1943).

Coleman, H. S.

H. S. Coleman and H. L. Yeagley, Trans. Am. Soc. Metal,  31, 105 (1943).

Goldsztaub, M.

M. Goldsztaub and P. Michel, C. R. Acad. Sci. (Paris) 232, 1843 (1951).

Hansen, M.

M. Hansen, Der Aufbau der Zweistofflegierungen (Edwards Brothers, Inc., Ann Arbor, Michigan, 1943).

Harris, L.

L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).
[Crossref]

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1956).

Koenig, H.

H. Koenig, Reichsber. Physik 1, 7 (1944).

Michel, P.

M. Goldsztaub and P. Michel, C. R. Acad. Sci. (Paris) 232, 1843 (1951).

Schulz, L. G.

L. G. Schulz, Advances in Phys. 6, 102 (1957).
[Crossref]

L. G. Schulz, J. Opt. Soc. Am. 44, 540 (1954).
[Crossref]

Siegel, B. M.

L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).
[Crossref]

Wyckoff, R. W. G.

R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, Inc., New York, 1951).

Yeagley, H. L.

H. S. Coleman and H. L. Yeagley, Trans. Am. Soc. Metal,  31, 105 (1943).

Advances in Phys. (1)

L. G. Schulz, Advances in Phys. 6, 102 (1957).
[Crossref]

C. R. Acad. Sci. (Paris) (1)

M. Goldsztaub and P. Michel, C. R. Acad. Sci. (Paris) 232, 1843 (1951).

J. Appl. Phys. (1)

L. Harris and B. M. Siegel, J. Appl. Phys. 19, 739 (1948).
[Crossref]

J. Opt. Soc. Am. (1)

Reichsber. Physik (1)

H. Koenig, Reichsber. Physik 1, 7 (1944).

Trans. Am. Soc. Metal (1)

H. S. Coleman and H. L. Yeagley, Trans. Am. Soc. Metal,  31, 105 (1943).

Other (3)

L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1956).

R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, Inc., New York, 1951).

M. Hansen, Der Aufbau der Zweistofflegierungen (Edwards Brothers, Inc., Ann Arbor, Michigan, 1943).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

F. 1
F. 1

The experimental arrangement used for producing gradient type deposits. The diameter of the modulator RC was 35 cm. The separation of the substrate and RC was made as small as possible usually about 1 mm; the distance from VS to the substrate was 30 cm.

F. 2
F. 2

Drawings showing various types of single, double, and multiple deposits.

F. 3
F. 3

Drawings showing the procedure for making several samples of different thicknesses during one evacuation of the vacuum equipment. Drawings (a) through (d) are for two-thickness samples; (e) and (f) are for three-thickness samples.

F. 4
F. 4

Drawings used to describe various kinds of sample defects.

F. 5
F. 5

Graph showing the transmission versus position of a single gradient sample of Ag at several wavelengths in the visible and ultraviolet regions. The coherent parts of the sample show exponential (Exp.) absorption whereas the thin noncoherent parts show nonexponential (Non-Exp.) absorption.

F. 6
F. 6

Graph showing the relative transmission versus position of a multiple deposit type sample of Ag and Au. The line labeled U is for the unannealed sample while A is for the same sample after annealing.

F. 7
F. 7

Graph showing the transmission versus position of a double gradient sample of Ag-Zn for two wavelengths, 0.4 μ and 0.57 μ.

F. 8
F. 8

Graph showing the relative transmission versus position of Ag-Zn at 3 μ.