Abstract

A filter in which the two high-reflection elements are dielectric multilayers of the type that show a rapid wavelength variation of the phase change on reflection yields several pass bands, some of which are very narrow. The grouping of these bands, and their various widths, depend in a characteristic way on the order in which the individual layers of the multilayers are arranged on the two sides of the spacer. Fair quantitative agreement is obtained between the theoretical and observed positions and widths of the bands. For an asymmetrical arrangement of the layers the filter shows, at one particular wavelength, no splitting of the pass band into polarized components at non-normal incidence.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Baumeister and F. A. Jenkins, J. Opt. Soc. Am. 47, 57 (1957).
    [Crossref]
  2. P. W. Baumeister and J. M. Stone, J. Opt. Soc. Am. 46, 288 (1956).
    [Crossref]
  3. A preliminary account of this work was given in J. Opt. Soc. Am. 48, 280(A) (1958).
  4. Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
    [Crossref]
  5. F. A. Jenkins, J. Phys. Radium 19, 301 (1958).
    [Crossref]
  6. S. Penselin and A. Steudel, Z. Physik 142, 21 (1955).
    [Crossref]
  7. Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
    [Crossref]
  8. J. M. Stone, J. Opt. Soc. Am. 43, 927 (1953).
    [Crossref]

1959 (1)

Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
[Crossref]

1958 (3)

F. A. Jenkins, J. Phys. Radium 19, 301 (1958).
[Crossref]

Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
[Crossref]

A preliminary account of this work was given in J. Opt. Soc. Am. 48, 280(A) (1958).

1957 (1)

1956 (1)

1955 (1)

S. Penselin and A. Steudel, Z. Physik 142, 21 (1955).
[Crossref]

1953 (1)

Baumeister,

Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
[Crossref]

Baumeister, P. W.

Beer,

Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
[Crossref]

Giacomo,

Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
[Crossref]

Hewison,

Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
[Crossref]

Jenkins,

Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
[Crossref]

Jenkins, F. A.

Penselin, S.

S. Penselin and A. Steudel, Z. Physik 142, 21 (1955).
[Crossref]

Ring,

Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
[Crossref]

Steudel, A.

S. Penselin and A. Steudel, Z. Physik 142, 21 (1955).
[Crossref]

Stone, J. M.

J. Opt. Soc. Am. (4)

J. Phys. Radium (2)

Ring, Beer, and Hewison, J. Phys. Radium 19, 321 (1958).
[Crossref]

F. A. Jenkins, J. Phys. Radium 19, 301 (1958).
[Crossref]

Proc. Phys. Soc. (London) (1)

Giacomo, Baumeister, and Jenkins, Proc. Phys. Soc. (London) 73, 480 (1959).
[Crossref]

Z. Physik (1)

S. Penselin and A. Steudel, Z. Physik 142, 21 (1955).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

Reflectances and phase shifts for the two multilayer mirrors specified in Table I. The wave number is designated by σ.

F. 2
F. 2

Predicted and observed pass bands for two symmetrical 31-layer filters with different spacer thicknesses nt=4200 A (solid line) and nt=3650 A (dashed line). The ϕA(σ) curve gives the theoretical shift for incidence on the thinnest layer of the broad-band multilayer, from the side of the cryolite spacer, index 1.35. Substrate: glass, index 1.52.

F. 3
F. 3

Average phase shifts of the two polarizations for normal and oblique incidence on an unsymmetrical filter. (a) 0° incidence. (b) 25° incidence. (c) 35° incidence. The symbols p and s refer to light polarized parallel and perpendicular, respectively, to the plane of incidence.

Tables (2)

Tables Icon

Table II Wavelengths of the pass bands of 31-layer filters at normal and oblique incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin 2 [ 2 π n t λ ϕ ( λ ) ] = 0 .
2 π n t σ = ϕ ( σ ) ,