Abstract

Indentation regions were formed in glass by pressing a hardened steel ball into the surface using loads below the fracture limit. These indented regions were found to recover with time and the process was studied with optical interference methods. A linear relationship was found between the logarithm of the depth of the indentation and the logarithm of the elapsed time after the load removal. The maximum load studied was about 5×105 psi. The indentation effect could still be observed at loads around 1×105 psi.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
    [CrossRef]
  2. W. Klemm and A. Smekal, Naturwissenschaften 29, 688 (1941).
    [CrossRef]
  3. P. Phillips, Phil. Mag. 9, 520 (1905).
  4. J. B. Murgatroyd and R. F. R. Sykes, J. Soc. Glass Tech. 31, 17 (1947).
  5. H. König, Z. Physik 26, 797 (1925).
  6. G. W. Morey, The Properties of Glass (Reinhold Publishing Corporation, New York, 1954) p. 322.
  7. J. P. A. Tillett, Proc. Phys. Soc. (London) B69, 47 (1956).
  8. H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28, 145 (1945).
    [CrossRef]
  9. S. R. Scholes, Modern Glass Practice (Industrial Publications, Chicago, 1946), fourth edition, p. 148.
  10. R. W. Douglas, J. Soc. Glass Tech. 42, 145 (1958).
  11. L. Ainsworth, J. Soc. Glass Tech. 38, 479 (1954).
  12. W. C. Levengood, J. Appl. Phys. 29, 820–826 (1958).
    [CrossRef]
  13. I. V. Grebenschikov, Sotsialisticheskaga Reconstrucktisiga i Nauka 2, 22 (1953).

1958 (2)

R. W. Douglas, J. Soc. Glass Tech. 42, 145 (1958).

W. C. Levengood, J. Appl. Phys. 29, 820–826 (1958).
[CrossRef]

1956 (1)

J. P. A. Tillett, Proc. Phys. Soc. (London) B69, 47 (1956).

1954 (1)

L. Ainsworth, J. Soc. Glass Tech. 38, 479 (1954).

1953 (2)

P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
[CrossRef]

I. V. Grebenschikov, Sotsialisticheskaga Reconstrucktisiga i Nauka 2, 22 (1953).

1947 (1)

J. B. Murgatroyd and R. F. R. Sykes, J. Soc. Glass Tech. 31, 17 (1947).

1945 (1)

H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28, 145 (1945).
[CrossRef]

1941 (1)

W. Klemm and A. Smekal, Naturwissenschaften 29, 688 (1941).
[CrossRef]

1925 (1)

H. König, Z. Physik 26, 797 (1925).

1905 (1)

P. Phillips, Phil. Mag. 9, 520 (1905).

Ainsworth, L.

L. Ainsworth, J. Soc. Glass Tech. 38, 479 (1954).

Bridgman, P. W.

P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
[CrossRef]

Douglas, R. W.

R. W. Douglas, J. Soc. Glass Tech. 42, 145 (1958).

Grebenschikov, I. V.

I. V. Grebenschikov, Sotsialisticheskaga Reconstrucktisiga i Nauka 2, 22 (1953).

Klemm, W.

W. Klemm and A. Smekal, Naturwissenschaften 29, 688 (1941).
[CrossRef]

König, H.

H. König, Z. Physik 26, 797 (1925).

Levengood, W. C.

W. C. Levengood, J. Appl. Phys. 29, 820–826 (1958).
[CrossRef]

Morey, G. W.

G. W. Morey, The Properties of Glass (Reinhold Publishing Corporation, New York, 1954) p. 322.

Murgatroyd, J. B.

J. B. Murgatroyd and R. F. R. Sykes, J. Soc. Glass Tech. 31, 17 (1947).

Phillips, P.

P. Phillips, Phil. Mag. 9, 520 (1905).

Powell, H. E.

H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28, 145 (1945).
[CrossRef]

Preston, F. W.

H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28, 145 (1945).
[CrossRef]

Scholes, S. R.

S. R. Scholes, Modern Glass Practice (Industrial Publications, Chicago, 1946), fourth edition, p. 148.

Simon, I.

P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
[CrossRef]

Smekal, A.

W. Klemm and A. Smekal, Naturwissenschaften 29, 688 (1941).
[CrossRef]

Sykes, R. F. R.

J. B. Murgatroyd and R. F. R. Sykes, J. Soc. Glass Tech. 31, 17 (1947).

Tillett, J. P. A.

J. P. A. Tillett, Proc. Phys. Soc. (London) B69, 47 (1956).

J. Am. Ceram. Soc. (1)

H. E. Powell and F. W. Preston, J. Am. Ceram. Soc. 28, 145 (1945).
[CrossRef]

J. Appl. Phys. (2)

P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
[CrossRef]

W. C. Levengood, J. Appl. Phys. 29, 820–826 (1958).
[CrossRef]

J. Soc. Glass Tech. (3)

J. B. Murgatroyd and R. F. R. Sykes, J. Soc. Glass Tech. 31, 17 (1947).

R. W. Douglas, J. Soc. Glass Tech. 42, 145 (1958).

L. Ainsworth, J. Soc. Glass Tech. 38, 479 (1954).

Naturwissenschaften (1)

W. Klemm and A. Smekal, Naturwissenschaften 29, 688 (1941).
[CrossRef]

Phil. Mag. (1)

P. Phillips, Phil. Mag. 9, 520 (1905).

Proc. Phys. Soc. (London) (1)

J. P. A. Tillett, Proc. Phys. Soc. (London) B69, 47 (1956).

Sotsialisticheskaga Reconstrucktisiga i Nauka (1)

I. V. Grebenschikov, Sotsialisticheskaga Reconstrucktisiga i Nauka 2, 22 (1953).

Z. Physik (1)

H. König, Z. Physik 26, 797 (1925).

Other (2)

G. W. Morey, The Properties of Glass (Reinhold Publishing Corporation, New York, 1954) p. 322.

S. R. Scholes, Modern Glass Practice (Industrial Publications, Chicago, 1946), fourth edition, p. 148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of loading device, (b) beam-splitter attachment for microscope.

Fig. 2
Fig. 2

Interference patterns around typical indentation regions; (a) Zeiss instrument— 3 16 -in. diam ball, 65-kg load on 0.086-in. thick glass for 46 hr (32×), (b) Beam-splitter device— 1 8 -in. ball, 30-kg load on 0.086-in. thick glass for 144 hr (12×).

Fig. 3
Fig. 3

Contour of indentation region shown in Fig. 2(a). (36×).

Fig. 4
Fig. 4

Typical recovery curve for indentation region.

Fig. 5
Fig. 5

Effect of loading time on the rate of recovery of indentations. ( 1 8 -in. ball, 30-kg load on 0.086-in. thick glass.)

Fig. 6
Fig. 6

Influence of a minute flaw on the recovery process ( 1 8 -in. ball and 30-kg load applied to 0.086-in. thick glass for 27 hrs).

Fig. 7
Fig. 7

Adherent rouge particles in dent region (550×).

Tables (2)

Tables Icon

Table I Typical recovery data of indentation regions in glass.a

Tables Icon

Table II Effect of load on indentation recovery rate ( 1 8 -in. diam ball; loading time 24 hrs).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d = n λ / 2 ,
thallium :             d = n ( 0.270 μ ) ,
sodium :             d = n ( 0.294 μ ) .
log d = m log t + K ,