Abstract

Isotope shifts are here reported for all stable isotopes of hafnium. The ratios found are: Δσ(180–178):Δσ(178–176):Δσ(176–174)=100:82.6±3.5:87.6±3.7 and Δσ(180–178):Δσ(180–179):Δσ(178–177)=100:61±9:73±8. The variation of the shifts with neutron number and the even-odd staggering are well beyond experimental error, and are therefore real. Magnitudes of the shifts observed in the spectral lines ranged from 29 to 46 mK. Centroids of the hyperfine-structure patterns due to the odd isotopes were located by using known ratios of the nuclear moments or of the hyperfine-structure parameters. The difference in the electric quadrupole moments between isotopes are discussed from the point of view of isotope-shift anomalies.

© 1958 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Temmer and N. P. Heydenburg, Phys. Rev. 99, 1615 (1955).
    [Crossref]
  2. D. R. Speck, Ph.D. thesis, University of California, Berkeley, California (1956).
  3. W. F. Meggers and B. F. Scribner, J. Research Natl. Bur. Standards 4, 169 (1930); W. F. Meggers (private communication).
    [Crossref]
  4. H. Kopfermann, Kernmomente (Akademische Verlagsgesellschaft, Frankfurt-am-Main, 1956), p. 153.
  5. E. Finckh and A. Steudel, Z. Physik 141, 19 (1955).
    [Crossref]
  6. Reference 4, p. 16.
  7. W. Humbach, Z. Physik 133, 589 (1952).
    [Crossref]
  8. Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
    [Crossref]
  9. J. A. Collinson, Phys. Rev. 96, 949 (1954).
    [Crossref]
  10. McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
    [Crossref]

1955 (3)

G. M. Temmer and N. P. Heydenburg, Phys. Rev. 99, 1615 (1955).
[Crossref]

E. Finckh and A. Steudel, Z. Physik 141, 19 (1955).
[Crossref]

McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
[Crossref]

1954 (1)

J. A. Collinson, Phys. Rev. 96, 949 (1954).
[Crossref]

1953 (1)

Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
[Crossref]

1952 (1)

W. Humbach, Z. Physik 133, 589 (1952).
[Crossref]

1930 (1)

W. F. Meggers and B. F. Scribner, J. Research Natl. Bur. Standards 4, 169 (1930); W. F. Meggers (private communication).
[Crossref]

Collinson, J. A.

J. A. Collinson, Phys. Rev. 96, 949 (1954).
[Crossref]

Finckh, E.

E. Finckh and A. Steudel, Z. Physik 141, 19 (1955).
[Crossref]

Ford,

Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
[Crossref]

Goodman,

McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
[Crossref]

Heydenburg, N. P.

G. M. Temmer and N. P. Heydenburg, Phys. Rev. 99, 1615 (1955).
[Crossref]

Hill,

Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
[Crossref]

Humbach, W.

W. Humbach, Z. Physik 133, 589 (1952).
[Crossref]

Kopfermann, H.

H. Kopfermann, Kernmomente (Akademische Verlagsgesellschaft, Frankfurt-am-Main, 1956), p. 153.

Mark,

McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
[Crossref]

McClelland,

McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
[Crossref]

Meggers, W. F.

W. F. Meggers and B. F. Scribner, J. Research Natl. Bur. Standards 4, 169 (1930); W. F. Meggers (private communication).
[Crossref]

Scribner, B. F.

W. F. Meggers and B. F. Scribner, J. Research Natl. Bur. Standards 4, 169 (1930); W. F. Meggers (private communication).
[Crossref]

Speck, D. R.

D. R. Speck, Ph.D. thesis, University of California, Berkeley, California (1956).

Steudel, A.

E. Finckh and A. Steudel, Z. Physik 141, 19 (1955).
[Crossref]

Temmer, G. M.

G. M. Temmer and N. P. Heydenburg, Phys. Rev. 99, 1615 (1955).
[Crossref]

Wilets,

Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
[Crossref]

J. Research Natl. Bur. Standards (1)

W. F. Meggers and B. F. Scribner, J. Research Natl. Bur. Standards 4, 169 (1930); W. F. Meggers (private communication).
[Crossref]

Phys. Rev. (4)

G. M. Temmer and N. P. Heydenburg, Phys. Rev. 99, 1615 (1955).
[Crossref]

Wilets, Hill, and Ford, Phys. Rev. 91, 1488 (1953).
[Crossref]

J. A. Collinson, Phys. Rev. 96, 949 (1954).
[Crossref]

McClelland, Mark, and Goodman, Phys. Rev. 97, 1191 (1955).
[Crossref]

Z. Physik (2)

E. Finckh and A. Steudel, Z. Physik 141, 19 (1955).
[Crossref]

W. Humbach, Z. Physik 133, 589 (1952).
[Crossref]

Other (3)

Reference 4, p. 16.

D. R. Speck, Ph.D. thesis, University of California, Berkeley, California (1956).

H. Kopfermann, Kernmomente (Akademische Verlagsgesellschaft, Frankfurt-am-Main, 1956), p. 153.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Microphotometer tracing of two orders of the line at 5373 A from the hafnium source which had been enriched in the isotope 174. Reading from left to right, in the direction of increasing wave number, the components are due to Hf 180, 178, 176, and 174. Interferometer spacer, 9 mm.

Fig. 2
Fig. 2

Observed intensity distributions in λ4620. (a) Hf177 sample; (b) Hf179 sample. Theoretical patterns are indicated by the heights and positions of the vertical lines.

Fig. 3
Fig. 3

Experimental values of isotope shifts, in units of the shifts predicted by the normal volume effect, are plotted against neutron number.

Fig. 4
Fig. 4

Diagram showing the shifts in the levels of HfI as predicted from those in the levels of HfII. Shifts are in mK.

Tables (7)

Tables Icon

Table I Relative concentrations of the stable isotopes in the hafnium samples, in percent.

Tables Icon

Table II Relative shifts between the even isotopes of hafnium.

Tables Icon

Table III Isotope shifts in the lines resulting from transitions from the odd states shown at the left to the even states shown above are given in mK. The wavelengths in A are shown directly above the shifts.

Tables Icon

Table IV Shifts in the levels of the odd configuration 5d26s6p relative to the 5d26s2 level.

Tables Icon

Table V Isotope shifts between the odd hafnium isotopes and their next heavier neighbors, in four lines, as determined from the positions of the hyperfine-structure components.

Tables Icon

Table VI Approximate shifts in the levels in HfI, in mK, as predicted from those in the levels in HfII.

Tables Icon

Table VII Differences between the squares of the intrinsic quadrupole moments in the various pairs of hafnium isotopes.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

44.4 + 1.5 = ( 1.60 ± 0.10 ) β Δ T 6 s - ( 0.92 ± 0.06 ) β Δ T 6 s β Δ T 6 s = 65.4 ± 14.3 mK .
β C exp = β Δ T 6 s a s / G = 65.4 ± 14.3 0.63 = 104 ± 23 mK .
Δ T = 1 2 A C + B 3 C ( C + 1 ) - 4 I ( I + 1 ) J ( J + 1 ) 8 I ( 2 I - 1 ) J ( 2 J - 1 ) ,
C = F ( F + I ) - I ( I + 1 ) - J ( J + 1 ) , F = I + J ,             I + J - 1 ,             ,             I - J , A = μ I H ( 0 ) Av I J ,             and             B = e Q ϕ J J ( 0 ) Av .
A ( 177 ) / A ( 179 ) = - 1.650 ± 0.009 ,
B ( 177 ) / B ( 179 ) = 0.95 ± 0.04.