Abstract

The intensity of the time-average output of the steady-state electroluminescence of powdered zinc sulfide phosphors in an intense alternating electric field is characterized by a dynamic equilibrium between the monomolecular collision excitation process and the bimolecular recombination process. This equilibrium condition permits predictions of the dependence of the emission intensity, the efficiency, and other properties on several parameters such as the voltage, the temperature, and the concentrations of electron traps and activator centers. These predictions are compared with experimental results.

© 1958 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a survey of many details of electroluminescence and related topics, and many references, see G. Destrian and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911 (1955).
  2. G. Destriau, Phil. Mag. 38, 700, 774, 880 (1947).
  3. D. Curie, J. Phys. radium 14, 510 (1953).
    [Crossref]
  4. W. W. Piper and F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).
    [Crossref]
  5. P. Zalm, Philips Research Repts. 11, 353, 417 (1956).
  6. J. B. Taylor and G. F. Alfrey, Brit. J. Appl. Phys. Suppl. 4, 44 (1955).
  7. G. F. Alfrey and J. B. Taylor, Proc. Phys. Soc. (London),  B68, 775 (1955).
  8. G. Diemer and P. Zalm, Physica,  22, 561 (1956).
    [Crossref]
  9. D. R. Frankl, Phys. Rev. 100, 1105 (1955).
    [Crossref]
  10. C. H. Haake, J. Electrochem. Soc. 104, 291 (1957).
    [Crossref]
  11. Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
    [Crossref]
  12. W. A. Thornton, Phys. Rev. 102, 38 (1956).
    [Crossref]
  13. W. Lehmann, Optik,  14, 319 (1957).
  14. Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).
  15. P. Zalm, Philips Research Repts. 11, 11 (1956).
  16. J. F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).
    [Crossref]
  17. Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
    [Crossref]
  18. W. Lehmann, J. Electrochem. Soc. 104, 45 (1957).
    [Crossref]
  19. W. Lehmann, J. Electrochem. Soc. 103, 24 (1956).
    [Crossref]
  20. W. Lehmann, J. Electrochem. Soc. 103, 667 (1956).
    [Crossref]
  21. G. R. Fonda, J. Phys. Chem. 43, 561 (1939).
    [Crossref]
  22. G. E. F. Garlick and A. F. Gibson, J. Opt. Soc. Am. 39, 935 (1949).
    [Crossref] [PubMed]
  23. C. H. Haake (private communication).
  24. W. Lehmann, Illum. Eng. 51, 684 (1956).
  25. Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).
  26. W. Lehmann, Phys. Rev. 101, 489 (1956).
    [Crossref]

1957 (4)

C. H. Haake, J. Electrochem. Soc. 104, 291 (1957).
[Crossref]

W. Lehmann, Optik,  14, 319 (1957).

W. Lehmann, J. Electrochem. Soc. 104, 45 (1957).
[Crossref]

Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).

1956 (10)

W. Lehmann, Phys. Rev. 101, 489 (1956).
[Crossref]

W. Lehmann, Illum. Eng. 51, 684 (1956).

P. Zalm, Philips Research Repts. 11, 11 (1956).

Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 24 (1956).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 667 (1956).
[Crossref]

Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
[Crossref]

W. A. Thornton, Phys. Rev. 102, 38 (1956).
[Crossref]

P. Zalm, Philips Research Repts. 11, 353, 417 (1956).

G. Diemer and P. Zalm, Physica,  22, 561 (1956).
[Crossref]

1955 (6)

D. R. Frankl, Phys. Rev. 100, 1105 (1955).
[Crossref]

J. B. Taylor and G. F. Alfrey, Brit. J. Appl. Phys. Suppl. 4, 44 (1955).

G. F. Alfrey and J. B. Taylor, Proc. Phys. Soc. (London),  B68, 775 (1955).

For a survey of many details of electroluminescence and related topics, and many references, see G. Destrian and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911 (1955).

W. W. Piper and F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).
[Crossref]

Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).

1954 (1)

J. F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).
[Crossref]

1953 (1)

D. Curie, J. Phys. radium 14, 510 (1953).
[Crossref]

1949 (1)

1947 (1)

G. Destriau, Phil. Mag. 38, 700, 774, 880 (1947).

1939 (1)

G. R. Fonda, J. Phys. Chem. 43, 561 (1939).
[Crossref]

Alfrey, G. F.

J. B. Taylor and G. F. Alfrey, Brit. J. Appl. Phys. Suppl. 4, 44 (1955).

G. F. Alfrey and J. B. Taylor, Proc. Phys. Soc. (London),  B68, 775 (1955).

Bitter, F.

J. F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).
[Crossref]

Curie, D.

D. Curie, J. Phys. radium 14, 510 (1953).
[Crossref]

Destrian, G.

For a survey of many details of electroluminescence and related topics, and many references, see G. Destrian and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911 (1955).

Destriau, G.

G. Destriau, Phil. Mag. 38, 700, 774, 880 (1947).

Diemer,

Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).

Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).

Diemer, G.

G. Diemer and P. Zalm, Physica,  22, 561 (1956).
[Crossref]

Fonda, G. R.

G. R. Fonda, J. Phys. Chem. 43, 561 (1939).
[Crossref]

Frankl, D. R.

D. R. Frankl, Phys. Rev. 100, 1105 (1955).
[Crossref]

Garlick, G. E. F.

Gibson, A. F.

Haake, C. H.

C. H. Haake, J. Electrochem. Soc. 104, 291 (1957).
[Crossref]

C. H. Haake (private communication).

Ivey, H. F.

For a survey of many details of electroluminescence and related topics, and many references, see G. Destrian and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911 (1955).

Johnson,

Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
[Crossref]

Klasens,

Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).

Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).

Lehmann, W.

W. Lehmann, Optik,  14, 319 (1957).

W. Lehmann, J. Electrochem. Soc. 104, 45 (1957).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 24 (1956).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 667 (1956).
[Crossref]

W. Lehmann, Illum. Eng. 51, 684 (1956).

W. Lehmann, Phys. Rev. 101, 489 (1956).
[Crossref]

Piper,

Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
[Crossref]

Piper, W. W.

W. W. Piper and F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).
[Crossref]

Short,

Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
[Crossref]

Steward,

Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
[Crossref]

Taylor, J. B.

J. B. Taylor and G. F. Alfrey, Brit. J. Appl. Phys. Suppl. 4, 44 (1955).

G. F. Alfrey and J. B. Taylor, Proc. Phys. Soc. (London),  B68, 775 (1955).

Thornton, W. A.

W. A. Thornton, Phys. Rev. 102, 38 (1956).
[Crossref]

Tomlinson,

Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
[Crossref]

Waymouth, J. F.

J. F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).
[Crossref]

Williams,

Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
[Crossref]

Williams, F. E.

W. W. Piper and F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).
[Crossref]

Zalm,

Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).

Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).

Zalm, P.

P. Zalm, Philips Research Repts. 11, 11 (1956).

P. Zalm, Philips Research Repts. 11, 353, 417 (1956).

G. Diemer and P. Zalm, Physica,  22, 561 (1956).
[Crossref]

Brit. J. Appl. Phys. Suppl. (2)

W. W. Piper and F. E. Williams, Brit. J. Appl. Phys. Suppl. 4, 39 (1955).
[Crossref]

J. B. Taylor and G. F. Alfrey, Brit. J. Appl. Phys. Suppl. 4, 44 (1955).

Illum. Eng. (1)

W. Lehmann, Illum. Eng. 51, 684 (1956).

J. Electrochem. Soc. (5)

W. Lehmann, J. Electrochem. Soc. 104, 45 (1957).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 24 (1956).
[Crossref]

W. Lehmann, J. Electrochem. Soc. 103, 667 (1956).
[Crossref]

C. H. Haake, J. Electrochem. Soc. 104, 291 (1957).
[Crossref]

Johnson, Piper, and Williams, J. Electrochem. Soc. 103, 221 (1956).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

G. R. Fonda, J. Phys. Chem. 43, 561 (1939).
[Crossref]

J. Phys. radium (1)

D. Curie, J. Phys. radium 14, 510 (1953).
[Crossref]

Nature (1)

Short, Steward, and Tomlinson, Nature,  177, 240 (1956).
[Crossref]

Optik (1)

W. Lehmann, Optik,  14, 319 (1957).

Phil. Mag. (1)

G. Destriau, Phil. Mag. 38, 700, 774, 880 (1947).

Philips Research Repts. (3)

P. Zalm, Philips Research Repts. 11, 353, 417 (1956).

Zalm, Diemer, and Klasens, Philips Research Repts. 10, 205 (1955).

P. Zalm, Philips Research Repts. 11, 11 (1956).

Philips Techn. Rev. (1)

Diemer, Klasens, and Zalm, Philips Techn. Rev. 19, 1 (1957).

Phys. Rev. (4)

W. Lehmann, Phys. Rev. 101, 489 (1956).
[Crossref]

J. F. Waymouth and F. Bitter, Phys. Rev. 95, 941 (1954).
[Crossref]

D. R. Frankl, Phys. Rev. 100, 1105 (1955).
[Crossref]

W. A. Thornton, Phys. Rev. 102, 38 (1956).
[Crossref]

Physica (1)

G. Diemer and P. Zalm, Physica,  22, 561 (1956).
[Crossref]

Proc. Inst. Radio Engrs. (1)

For a survey of many details of electroluminescence and related topics, and many references, see G. Destrian and H. F. Ivey, Proc. Inst. Radio Engrs. 43, 1911 (1955).

Proc. Phys. Soc. (London) (1)

G. F. Alfrey and J. B. Taylor, Proc. Phys. Soc. (London),  B68, 775 (1955).

Other (1)

C. H. Haake (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The energy band model for a phosphor and the four electron transitions considered in this paper.

Fig. 2
Fig. 2

Experimentally observed temperature dependence of the real emission intensity, L, the thermal quenching factor, Q, and the ideal emission intensity, Λ=L/Q. (Phosphor: Green-emitting ZnS: Cu, Cl excited by a frequency of 100 cps. Data from C. H. Haake.)

Fig. 3
Fig. 3

Theoretical temperature dependence of the ideal emission intensity, Λ, the thermal quenching factor, Q, and the real emission intensity, L=QΛ, for three single-trap phosphors with low (L1, Q1, Λ1), moderate (L2, Q2, Λ2), and high (L3, Q3, Λ3) activator concentrations (schematic).

Fig. 4
Fig. 4

Voltage dependence of the emission intensity, L, and the efficiency, η, of electroluminescence. (Phosphor: green-emitting ZnS: Cu, Cl excited by a frequency of 500 cps.)

Fig. 5
Fig. 5

Theoretical temperature dependence of the efficiency of electroluminescence at various exciting voltages, V (schematic).

Fig. 6
Fig. 6

Temperature dependence of emission intensity, L, power absorption, W, and efficiency, η=L/W, of electroluminescence. (Phosphor: green-emitting ZnS: Cu, Cl excited by a frequency of 50 cps. Data from C. H. Haake.)

Fig. 7
Fig. 7

Theoretical temperature dependence of the efficiency of electroluminescence of phosphors of various activator concentrations, N (schematic).

Fig. 8
Fig. 8

Temperature dependence of the efficiency (in terms of quanta per watt) of electroluminescence of two zinc sulfides of different activator concentrations but otherwise similar. Phosphor A: 0.95 mole% Cu and 0.82 mole% Cl added before firing. Phosphor B: 0.63 mole% Cu and 0.14 mole% Cl added before firing. Frequency of excitation: 50 cps (data from C. H. Haake).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

( Δ n ) I = α 1 γ n N ,             ( α 1 = const ) .
γ = exp ( - F 0 / F ) ,
( Δ n ) II = - α 2 n m ,             ( α 2 = const ) .
( Δ n ) III = - α 3 n M ,             ( α 3 = const ) .
p = s exp ( - E / k T )
( Δ n ) IV = m p .
( Δ n ) I + ( Δ n ) II = 0             and             ( Δ n ) III + ( Δ n ) IV = 0.
α 1 γ n M = α 2 n m             and             α 3 n M = m p .
n = α 1 γ N p / α 2 α 3 M ,
m = α 1 γ N / α 2 .
β = α 1 2 γ 2 N 2 p / α 2 α 3 M
β = n 2 α 2 α 3 M / p .
w = n e μ F 2 .
η = α 1 γ N / e μ F 2 .
β = prop. exp ( - 2 F 0 / F ) .
Q = [ 1 + c exp ( - q / k T ) ] - 1 ,
W α L 1 2 V 2 .
W = a V 2 ( b + L 1 2 )
η = L a V 2 ( b + L 1 2 ) .
η = L / ( a b V 2 ) .
η = L 1 2 / ( α V 2 ) .