Abstract

<p>The behavior of the phase along the axis of aberration-free microwave lenses is shown by curves of the axial phase anomaly calculated from scalar Kirchhoff diffraction theory. These curves are drawn for three different wavelengths and two typical focal lengths. Also illustrated in the calculated results are the errors introduced by the use of certain geometrical approximations commonly employed in light optics.</p><p>Detailed experimental measurements have been made of the electric field along the axis in the point-source image produced by solid dielectric lenses at a wavelength of 3.2 cm. Despite the limited size of the exit pupil (radius approximately 8 wavelengths) the agreement between the measured values of the axial phase anomaly and those calculated from scalar theory is very good except within about one lens radius of the lens surface.</p>

PDF Article

References

  • View by:
  • |
  • |

  1. L. G. Gouy, Comp. rend. acad. sci., Paris 110, 1251 (1890); ibid, Ann. chim. et phys. 24, 145 (1891).
  2. F. Reiche, Ann. Physik 29, 65 and 401 (1909).
  3. H. W. Breuniger, Ann. phys. 35, 228 (1939).
  4. E. H. Linfoot and E. Wolf, Proc. Phys. Soc. (London) A69, 823 (1956).
  5. P. Zeeman, Z. Physik 1, 542 (1899โ€“1900).
  6. G. Sagnac, J. Phys. (Theoret. Inst.) 2, 721 (1903).
  7. G. Bekefi, Final Report to Air Force Cambridge Research Center on Contract AF19(122)-81, Eaton Laboratory, McGill University, ASTIA Doc. No. AD110152, 1957.
  8. T. J. F. Pavlasek, Ph.D. thesis, McGill University, 1958.
  9. M. P. Bachynski and G. Bekefi, J. Opt. Soc. Am. 47, 428 (1957).
  10. M. P. Bachynski and G. Bekefi, I.R.E. Trans. P.G.A.P., AP-4, 412 (1956).
  11. B. B. Baker and E. T. Copson, Mathematical Theory of Huygens Principle (Clarendon Press, Oxford, 1950), p. 74.
  12. A. Rubinowicz, Ann. Physik 53, 257 (1917); ibid, Phys. Rev. 54, 931 (1938).
  13. C. J. Bouwkamp, Physica 7, (1940), 485.
  14. F. Zernike and B. R. N. Nijboer, Contribution to "Theorie des Image Optiques," Rev. opt., (1949).
  15. E. H. Linfoot, Recent Advances in Optics (Clarendon Press, Oxford, 1955), p. 35.
  16. E. Wolf, Proc. Roy. Soc. (London) A204, 533 (1951).
  17. P. Debye, Ann. Physik (4) 30, 755 (1909).

Bachynski, M. P.

M. P. Bachynski and G. Bekefi, J. Opt. Soc. Am. 47, 428 (1957).

M. P. Bachynski and G. Bekefi, I.R.E. Trans. P.G.A.P., AP-4, 412 (1956).

Baker, B. B.

B. B. Baker and E. T. Copson, Mathematical Theory of Huygens Principle (Clarendon Press, Oxford, 1950), p. 74.

Bekefi, G.

M. P. Bachynski and G. Bekefi, I.R.E. Trans. P.G.A.P., AP-4, 412 (1956).

M. P. Bachynski and G. Bekefi, J. Opt. Soc. Am. 47, 428 (1957).

G. Bekefi, Final Report to Air Force Cambridge Research Center on Contract AF19(122)-81, Eaton Laboratory, McGill University, ASTIA Doc. No. AD110152, 1957.

Bouwkamp, C. J.

C. J. Bouwkamp, Physica 7, (1940), 485.

Breuniger, H. W.

H. W. Breuniger, Ann. phys. 35, 228 (1939).

Copson, E. T.

B. B. Baker and E. T. Copson, Mathematical Theory of Huygens Principle (Clarendon Press, Oxford, 1950), p. 74.

Debye, P.

P. Debye, Ann. Physik (4) 30, 755 (1909).

Gouy, L. G.

L. G. Gouy, Comp. rend. acad. sci., Paris 110, 1251 (1890); ibid, Ann. chim. et phys. 24, 145 (1891).

Linfoot, E. H.

E. H. Linfoot and E. Wolf, Proc. Phys. Soc. (London) A69, 823 (1956).

E. H. Linfoot, Recent Advances in Optics (Clarendon Press, Oxford, 1955), p. 35.

Nijboer, B. R. N.

F. Zernike and B. R. N. Nijboer, Contribution to "Theorie des Image Optiques," Rev. opt., (1949).

Pavlasek, T. J. F.

T. J. F. Pavlasek, Ph.D. thesis, McGill University, 1958.

Reiche, F.

F. Reiche, Ann. Physik 29, 65 and 401 (1909).

Rubinowicz, A.

A. Rubinowicz, Ann. Physik 53, 257 (1917); ibid, Phys. Rev. 54, 931 (1938).

Sagnac, G.

G. Sagnac, J. Phys. (Theoret. Inst.) 2, 721 (1903).

Wolf, E.

E. Wolf, Proc. Roy. Soc. (London) A204, 533 (1951).

E. H. Linfoot and E. Wolf, Proc. Phys. Soc. (London) A69, 823 (1956).

Zeeman, P.

P. Zeeman, Z. Physik 1, 542 (1899โ€“1900).

Zernike, F.

F. Zernike and B. R. N. Nijboer, Contribution to "Theorie des Image Optiques," Rev. opt., (1949).

Other

L. G. Gouy, Comp. rend. acad. sci., Paris 110, 1251 (1890); ibid, Ann. chim. et phys. 24, 145 (1891).

F. Reiche, Ann. Physik 29, 65 and 401 (1909).

H. W. Breuniger, Ann. phys. 35, 228 (1939).

E. H. Linfoot and E. Wolf, Proc. Phys. Soc. (London) A69, 823 (1956).

P. Zeeman, Z. Physik 1, 542 (1899โ€“1900).

G. Sagnac, J. Phys. (Theoret. Inst.) 2, 721 (1903).

G. Bekefi, Final Report to Air Force Cambridge Research Center on Contract AF19(122)-81, Eaton Laboratory, McGill University, ASTIA Doc. No. AD110152, 1957.

T. J. F. Pavlasek, Ph.D. thesis, McGill University, 1958.

M. P. Bachynski and G. Bekefi, J. Opt. Soc. Am. 47, 428 (1957).

M. P. Bachynski and G. Bekefi, I.R.E. Trans. P.G.A.P., AP-4, 412 (1956).

B. B. Baker and E. T. Copson, Mathematical Theory of Huygens Principle (Clarendon Press, Oxford, 1950), p. 74.

A. Rubinowicz, Ann. Physik 53, 257 (1917); ibid, Phys. Rev. 54, 931 (1938).

C. J. Bouwkamp, Physica 7, (1940), 485.

F. Zernike and B. R. N. Nijboer, Contribution to "Theorie des Image Optiques," Rev. opt., (1949).

E. H. Linfoot, Recent Advances in Optics (Clarendon Press, Oxford, 1955), p. 35.

E. Wolf, Proc. Roy. Soc. (London) A204, 533 (1951).

P. Debye, Ann. Physik (4) 30, 755 (1909).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.