Abstract

The theory of the two path-length method for optically determining flame temperature is reviewed, and the requirements for quantitative photographic measurement are presented. Apparatus which includes a camera with the necessary combination of film and filters to accept light in a narrow wavelength interval, and several adjustable lamps to serve as standard sources, is described. The film record contains an image of the rocket exhaust jet adjacent to the images of the lamp filaments whose temperatures are known from a previous calibration with an optical pyrometer. Comparison of measured intensities with and without a reflector behind the flame yields the emittance and flame temperature. Some results of measurements at the exit regions of rocket nozzles affording nearly optimum expanison are presented. The utility of the method in rocket performance studies is discussed.

© 1958 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Male, Rev. Sci. Instr. 22, 769 (1951).
    [CrossRef]
  2. P. J. Dyne and S. S. Penner, J. Am. Rocket Soc. 23, 174 (1953).
    [CrossRef]
  3. ASA Z10.4, Trans. Am. Soc. Mech. Engrs., p. 17, 1943.
  4. J. C. DeVos, Physica 20, 690 (1954).
    [CrossRef]
  5. V. N. Huff and A. Fortini, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. I-Frozen composition,” Natl. Advisory Comm. Aeron. RME 56 A27 (1956).
  6. Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).
  7. H. G. Wolfhard and W. G. Parker, Proc. Phys. Soc. (London) 62, 523, (1949).
    [CrossRef]

1956 (2)

V. N. Huff and A. Fortini, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. I-Frozen composition,” Natl. Advisory Comm. Aeron. RME 56 A27 (1956).

Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).

1954 (1)

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

1953 (1)

P. J. Dyne and S. S. Penner, J. Am. Rocket Soc. 23, 174 (1953).
[CrossRef]

1951 (1)

D. W. Male, Rev. Sci. Instr. 22, 769 (1951).
[CrossRef]

1949 (1)

H. G. Wolfhard and W. G. Parker, Proc. Phys. Soc. (London) 62, 523, (1949).
[CrossRef]

1943 (1)

ASA Z10.4, Trans. Am. Soc. Mech. Engrs., p. 17, 1943.

DeVos, J. C.

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

Dyne, P. J.

P. J. Dyne and S. S. Penner, J. Am. Rocket Soc. 23, 174 (1953).
[CrossRef]

Fortini,

Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).

Fortini, A.

V. N. Huff and A. Fortini, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. I-Frozen composition,” Natl. Advisory Comm. Aeron. RME 56 A27 (1956).

Gordon,

Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).

Huff,

Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).

Huff, V. N.

V. N. Huff and A. Fortini, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. I-Frozen composition,” Natl. Advisory Comm. Aeron. RME 56 A27 (1956).

Male, D. W.

D. W. Male, Rev. Sci. Instr. 22, 769 (1951).
[CrossRef]

Parker, W. G.

H. G. Wolfhard and W. G. Parker, Proc. Phys. Soc. (London) 62, 523, (1949).
[CrossRef]

Penner, S. S.

P. J. Dyne and S. S. Penner, J. Am. Rocket Soc. 23, 174 (1953).
[CrossRef]

Wolfhard, H. G.

H. G. Wolfhard and W. G. Parker, Proc. Phys. Soc. (London) 62, 523, (1949).
[CrossRef]

J. Am. Rocket Soc. (1)

P. J. Dyne and S. S. Penner, J. Am. Rocket Soc. 23, 174 (1953).
[CrossRef]

Natl. Advisory Comm. Aeron. RME 56 A27 (1)

V. N. Huff and A. Fortini, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. I-Frozen composition,” Natl. Advisory Comm. Aeron. RME 56 A27 (1956).

Natl. Advisory Comm. Aeron. RME 56 D23 (1)

Huff, Fortini, and Gordon, “Theoretical performance of JP-4 fuel and liquid oxygen as a rocket propellant. II-Equilibrium Composition,” Natl. Advisory Comm. Aeron. RME 56 D23 (1956).

Physica (1)

J. C. DeVos, Physica 20, 690 (1954).
[CrossRef]

Proc. Phys. Soc. (London) (1)

H. G. Wolfhard and W. G. Parker, Proc. Phys. Soc. (London) 62, 523, (1949).
[CrossRef]

Rev. Sci. Instr. (1)

D. W. Male, Rev. Sci. Instr. 22, 769 (1951).
[CrossRef]

Trans. Am. Soc. Mech. Engrs. (1)

ASA Z10.4, Trans. Am. Soc. Mech. Engrs., p. 17, 1943.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The photographic instrument in detailed view.

Fig. 2
Fig. 2

The photographic instrument set up for a measurement on a rocket exhaust jet.

Fig. 3
Fig. 3

A positive reproduction made from a negative record showing the image of a rocket exhaust jet with the images of the standard lamp filaments.

Fig. 4
Fig. 4

A typical curve of film density vs reciprocal temperature obtained from a film record.

Tables (1)

Tables Icon

Table I Summary of experimental data taken in the exhaust jet near the nozzle exit of a small rocket engine,

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

J λ = λ J λ , b ( T ) J λ , b ( T b r ) ,
J λ = [ 1 + R λ ( 1 - α λ ) ] λ J λ , b ,
1 / T = 1 / T b r + ( λ / C 2 ) log [ 1 - ( 1 / R λ ) ( J λ / J λ - 1 ) ] ,
λ = 1 - ( 1 / R λ ) ( J λ / J λ - 1 ) .
α λ = 1 - exp ( - k λ ρ L ) ,
Δ λ λ = ( λ - 1 - 1 / R λ λ ) Δ ( J λ / J λ ) ( J λ / J λ ) .
( C 2 / λ T ) ( Δ T / T ) = - ( Δ λ / λ ) + ( C 2 / λ T b r ) ( Δ T b r / T b r ) .
Δ T T = [ ( 1 - λ + 1 / R λ λ ) ( λ T C 2 ) ] Δ ( J λ / J λ ) ( J λ / J λ ) .
1 / T b r , 2 = 1 / T b r , 1 + ( λ 1 / C 2 ) [ log λ , 1 - ( λ 2 / λ 1 ) log λ , 2 ] .