Abstract

Very hard and durable single layer antireflection coatings for Ge and Si have been made which result in a peak transmittance of better than 98% at any desired wavelength in the infrared up to about 15μ. Silicon monoxide makes an excellent antireflection coating for silicon and germanium in the near infrared, but cannot be used in the 10-μ region where it becomes strongly absorbing. Zinc sulfide has been found to be the most suitable antirefiecting material at the longer wavelengths. Under proper conditions zinc sulfide films, which in the past have frequently exhibited unsatisfactory durability, can be prepared as very hard and adherent antireflection coatings for germanium and silicon. The best zinc sulfide films are obtained when the substrate is heated to about 150°C and cleaned with a dc glow discharge just before the evaporation is made. The coatings can stand several hours boiling and several days immersion in water without damage and have been used for periods up to one year without showing any deterioration.

© 1958 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Hall and W. F. C. Ferguson, J. Opt. Soc. Am. 45, 714 (1955).
    [Crossref]
  2. G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
    [Crossref]
  3. G. Hass and C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954).
    [Crossref]
  4. G. Hass and A. F. Turner, Ergebnisse der Hochvakuumtechnik and der Physik dünner Schichten, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1957.
  5. G. Hass and J. B. Ramsey, J. Opt. Soc. Am. 45, 408 (A) (1955).
    [Crossref]

1955 (2)

J. F. Hall and W. F. C. Ferguson, J. Opt. Soc. Am. 45, 714 (1955).
[Crossref]

G. Hass and J. B. Ramsey, J. Opt. Soc. Am. 45, 408 (A) (1955).
[Crossref]

1954 (1)

1950 (1)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[Crossref]

Ferguson, W. F. C.

Hall, J. F.

Hass, G.

G. Hass and J. B. Ramsey, J. Opt. Soc. Am. 45, 408 (A) (1955).
[Crossref]

G. Hass and C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954).
[Crossref]

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[Crossref]

G. Hass and A. F. Turner, Ergebnisse der Hochvakuumtechnik and der Physik dünner Schichten, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1957.

Ramsey, J. B.

G. Hass and J. B. Ramsey, J. Opt. Soc. Am. 45, 408 (A) (1955).
[Crossref]

Salzberg, C. D.

Turner, A. F.

G. Hass and A. F. Turner, Ergebnisse der Hochvakuumtechnik and der Physik dünner Schichten, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1957.

J. Am. Ceram. Soc. (1)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950).
[Crossref]

J. Opt. Soc. Am. (3)

Other (1)

G. Hass and A. F. Turner, Ergebnisse der Hochvakuumtechnik and der Physik dünner Schichten, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1957.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of evaporation source for evaporating large quantities of ZnS at rather high deposition rates.

Fig. 2
Fig. 2

Curve used for monitoring the thickness of infrared antireflection coatings of ZnS with monochromatic visible light (λ=550 mμ).

Fig. 3
Fig. 3

Transmittance of a Si plate (t=1.5 mm) with and without antireflection coatings of SiO (nt=λ/4 at 1.7 μ) from 1 to 3 μ.

Fig. 4
Fig. 4

Transmittance of a Ge plate (t=1.0 mm) with and without antireflection coatings of CeO2 (nt=λ/4 at 2.5 μ) from 1 to 5 μ.

Fig. 5
Fig. 5

Transmittance of a Ge plate (t=1.0 mm) with and without antireflection coatings of ZnS (nt=λ/4 at 9.8 μ) from 7 to 14 μ.

Fig. 6
Fig. 6

Maximum transmittance obtained with λ/4 films of ZnS on germanium as a function of wavelength from 2 to 14 μ.

Fig. 7
Fig. 7

Transmittance of a Si plate (t=1.5 mm) with and without antireflection coatings of ZnS (nt=λ/4 at 9.8 μ) from 7 to 14 μ.