Abstract

An instrument is described which has been built for the automatic recording of sequence exposures on 4-by-10-in. photographic plates. Twelve shutter slides are independently timed so that on one plate up to 384 4-by-5-mm rectangles can be uniformly exposed to high and low intensity radiation. The present design is for an intensity ratio of 100:1, where both intensities are below optimum. With minor modifications the instrument can be converted to operate at other intensity ratios. The densitometer readings are checked from calibration strip data placed adjacent to the sequence exposures. The corrected data, following conversion to Seidel values, are plotted as families of characteristic curves, with the sequence exposure ratio as the constant parameter. Isodense loop data are read from the curves at the intersection with a line drawn parallel to the exposure axis.

A theoretical discussion of isodense loops is presented which is based on the hypothesis that for isodense exposures the probability of rendering the last grains developable must be equal. It is shown how this method should yield the limiting slope of the low intensity failure curve and the minimum number of quanta absorbed by the average grain to become developable. Preliminary results presented here for Eastman Kodak Emulsion Type 33 are within expectation.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Webb and C. H. Evans, J. Opt. Soc. Am. 28, 431 (1938).
    [CrossRef]
  2. C. E. Weinland, J. Opt. Soc. Am. 16, 295 (1928).
    [CrossRef]
  3. E. Katz, J. Chem. Phys. 18, 499 (1950).
    [CrossRef]
  4. H. Kaiser, Spectrochim. Acta 3, 159 (1948).
    [CrossRef]
  5. E. Katz, J. Chem. Phys. 17, 1132 (1949).
    [CrossRef]
  6. J. H. Webb, J. Opt. Soc. Am. 38, 312 (1948).
    [CrossRef] [PubMed]

1950 (1)

E. Katz, J. Chem. Phys. 18, 499 (1950).
[CrossRef]

1949 (1)

E. Katz, J. Chem. Phys. 17, 1132 (1949).
[CrossRef]

1948 (2)

1938 (1)

1928 (1)

J. Chem. Phys. (2)

E. Katz, J. Chem. Phys. 18, 499 (1950).
[CrossRef]

E. Katz, J. Chem. Phys. 17, 1132 (1949).
[CrossRef]

J. Opt. Soc. Am. (3)

Spectrochim. Acta (1)

H. Kaiser, Spectrochim. Acta 3, 159 (1948).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sequence exposure instrument panel.

Fig. 2
Fig. 2

Sample sequence exposures for two adjacent slides.

Fig. 3
Fig. 3

Typical set of characteristic curves from one plate, with the sequence exposure ratio as constant parameter.

Fig. 4
Fig. 4

Typical set of isodense loops, from one plate, for the densities 1.0, 0.6, and 0.3.

Fig. 5
Fig. 5

Experimental data plotted as 1/S vs p for the upper (L+H) curves of each loop in Fig. 4.

Tables (2)

Tables Icon

Table I Experimental data.

Tables Icon

Table II Incident exposure data.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W = 0 T F ( t ) P ( t ) d t ,
W = λ - α I 0 T ( 1 - t / T ) t - α e - I t d t = ( λ T ) - α e - I T + ( I - β / T ) 0 T t - α e - I t d t ,
W = ( λ T ) - α e - I T + ( 1 - β / I T ) ( I / λ ) α Γ ( β ) ,
W 1 ( p E - 1 + e - p E ) + W 2 ( q E - 1 + e - q E - E 0 ) = W L ( E L - 1 + e - E L - E 0 ) = W H ( E H - 1 + e - E H - E 0 ) ,
( 1 - β p E ) ( p E - 1 ) + w ( 1 - β q E ) ( q E - 1 - E 0 ) = w ( 1 - β E H ) ( E H - 1 - E 0 ) ,
w ( 1 - β p E ) ( p E - 1 ) + ( 1 - β q E ) ( q E - 1 - E 0 ) = ( 1 - β E L ) ( E L - 1 - E 0 ) ,
1 S = w w - 1 - p .
E 2 [ p 2 + w p ( q - a ) ] - E p ( 1 + β ) + β [ 1 + w p ( 1 + E 0 ) ( 1 q - a ) ] = 0 ,
E 2 [ w p 2 + p ( q - a ) ] - E w p ( 1 + β ) + β [ w + p ( 1 + E 0 ) ( 1 q - 1 a ) ] = 0.
E 0 = w ( 1 - β E H ) ( E H - 1 ) - ( 1 - β E L ) ( E L - 1 ) w ( 1 - β E H ) - ( 1 - β E L ) ,
E n , m = p m E n , 15 + q m E n , 0 = p m I H T H , n + ( 1 - p m ) I L T L , n ,
k = I H I L T H , n T L , n ,
E n , m = I H T H , n ( p m + 1 - p m k ) ,
p m E n , 15 = p m E n , m q m E n , 0 = q m E n , m
p m + q m = 1.
p m = m k 15 + m ( k - 1 ) , q m = 15 - m 15 + m ( k - 1 ) .