Abstract

A blackbody and an electrical method of absolute radiometry employing direct current instruments for the measurement of current and resistance are described. The blackbody, designed for performance near 1000°C, is an electrically heated tubular furnace containing an oxidized steel chamber as the radiating source. The radiometer consists, essentially, of a coil of platinum wire wound spirally and bifilar-wise on a blackened, thin, silver disk from which it is electrically insulated but in good thermal contact. The change in resistance of the coil is a measure of the radiation absorbed by the coated disk. By heating the coil electrically, the energy required to produce this change is readily calculated; thus, the deviation of the radiant energy of the source from the corresponding computed perfect blackbody radiation can be determined. This method indicated that the radiant flux emitted by the above source is within 1% of that from such an ideal blackbody at a temperature between 800°C and 1100°C. Included is a description of the apparatus used in the assemblage, as well as of the procedure followed in obtaining data, with a discussion of the probable sources of error.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Coblentz, Bull. Bur. Standards 12, 553 (1915–1916).
    [Crossref]
  2. F. Kurlbaum, Ann. Physik (3) 65, 746 (1898).
    [Crossref]
  3. W. Wien and O. Lummer, Ann. Physik (3) 56, 451 (1895).
    [Crossref]
  4. O. Lummer and F. Kurlbaum, Verhandl. physik. Ges. (Berlin) 17, 106 (1898).
  5. Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).
  6. A. Gouffé, Rev. opt. 24, 1 (1945).
  7. H. F. Stimson, J. Research Natl. Bur. Standards 42, 209 (1949).
    [Crossref]
  8. W. F. Roeser and H. T. Wensel in Temperature—Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).
  9. W. W. Coblentz, Bull. Bur. Standards 10, 28 (1914).
  10. W. W. Coblentz and W. B. Emerson, Bull. Bur. Standards 12, 503 (1915–1916).
    [Crossref]
  11. E. F. Mueller, Bull. Bur. Standards 13, 547 (1916–1917).
    [Crossref]
  12. M. Eppley, Rev. Sci. Instr. 3, 687 (1932).
    [Crossref]
  13. A. J. Jaffey, Rev. Sci. Instr. 25, 349–354 (1954).
    [Crossref]
  14. G. A. W. Rutgers, Physica 17, 131 (1951).
  15. R. T. Birge, Phys. Rev. Suppl. 1, 1 (1929).
  16. L. Harris and K. F. Cuff, J. Opt. Soc. Am. 46, 160 (1956).
    [Crossref]
  17. W. Gerlach, Ann. Physik (4) 50, 233 (1916).
    [Crossref]
  18. C. Müller, Z. Physik 82, 1 (1933).
    [Crossref]
  19. J. Guild, Proc. Roy. Soc. (London) A161, 1 (1937).
  20. E. J. Gillham, Brit. J. Appl. Phys. 4, 151 (1953).
    [Crossref]

1956 (1)

1955 (1)

Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).

1954 (1)

A. J. Jaffey, Rev. Sci. Instr. 25, 349–354 (1954).
[Crossref]

1953 (1)

E. J. Gillham, Brit. J. Appl. Phys. 4, 151 (1953).
[Crossref]

1951 (1)

G. A. W. Rutgers, Physica 17, 131 (1951).

1949 (1)

H. F. Stimson, J. Research Natl. Bur. Standards 42, 209 (1949).
[Crossref]

1945 (1)

A. Gouffé, Rev. opt. 24, 1 (1945).

1937 (1)

J. Guild, Proc. Roy. Soc. (London) A161, 1 (1937).

1933 (1)

C. Müller, Z. Physik 82, 1 (1933).
[Crossref]

1932 (1)

M. Eppley, Rev. Sci. Instr. 3, 687 (1932).
[Crossref]

1929 (1)

R. T. Birge, Phys. Rev. Suppl. 1, 1 (1929).

1916 (1)

W. Gerlach, Ann. Physik (4) 50, 233 (1916).
[Crossref]

1914 (1)

W. W. Coblentz, Bull. Bur. Standards 10, 28 (1914).

1898 (2)

O. Lummer and F. Kurlbaum, Verhandl. physik. Ges. (Berlin) 17, 106 (1898).

F. Kurlbaum, Ann. Physik (3) 65, 746 (1898).
[Crossref]

1895 (1)

W. Wien and O. Lummer, Ann. Physik (3) 56, 451 (1895).
[Crossref]

Birge, R. T.

R. T. Birge, Phys. Rev. Suppl. 1, 1 (1929).

Coblentz, W. W.

W. W. Coblentz, Bull. Bur. Standards 12, 553 (1915–1916).
[Crossref]

W. W. Coblentz and W. B. Emerson, Bull. Bur. Standards 12, 503 (1915–1916).
[Crossref]

W. W. Coblentz, Bull. Bur. Standards 10, 28 (1914).

Cuff, K. F.

Dunkle,

Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).

Emerson, W. B.

W. W. Coblentz and W. B. Emerson, Bull. Bur. Standards 12, 503 (1915–1916).
[Crossref]

Eppley, M.

M. Eppley, Rev. Sci. Instr. 3, 687 (1932).
[Crossref]

Gerlach, W.

W. Gerlach, Ann. Physik (4) 50, 233 (1916).
[Crossref]

Gier,

Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).

Gillham, E. J.

E. J. Gillham, Brit. J. Appl. Phys. 4, 151 (1953).
[Crossref]

Gouffé, A.

A. Gouffé, Rev. opt. 24, 1 (1945).

Guild, J.

J. Guild, Proc. Roy. Soc. (London) A161, 1 (1937).

Harris, L.

Jaffey, A. J.

A. J. Jaffey, Rev. Sci. Instr. 25, 349–354 (1954).
[Crossref]

Kurlbaum, F.

O. Lummer and F. Kurlbaum, Verhandl. physik. Ges. (Berlin) 17, 106 (1898).

F. Kurlbaum, Ann. Physik (3) 65, 746 (1898).
[Crossref]

Lummer, O.

O. Lummer and F. Kurlbaum, Verhandl. physik. Ges. (Berlin) 17, 106 (1898).

W. Wien and O. Lummer, Ann. Physik (3) 56, 451 (1895).
[Crossref]

Mueller, E. F.

E. F. Mueller, Bull. Bur. Standards 13, 547 (1916–1917).
[Crossref]

Müller, C.

C. Müller, Z. Physik 82, 1 (1933).
[Crossref]

Roeser, W. F.

W. F. Roeser and H. T. Wensel in Temperature—Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).

Rutgers, G. A. W.

G. A. W. Rutgers, Physica 17, 131 (1951).

Snyder,

Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).

Stimson, H. F.

H. F. Stimson, J. Research Natl. Bur. Standards 42, 209 (1949).
[Crossref]

Wensel, H. T.

W. F. Roeser and H. T. Wensel in Temperature—Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).

Wien, W.

W. Wien and O. Lummer, Ann. Physik (3) 56, 451 (1895).
[Crossref]

Ann. Physik (3) (2)

F. Kurlbaum, Ann. Physik (3) 65, 746 (1898).
[Crossref]

W. Wien and O. Lummer, Ann. Physik (3) 56, 451 (1895).
[Crossref]

Ann. Physik (4) (1)

W. Gerlach, Ann. Physik (4) 50, 233 (1916).
[Crossref]

Brit. J. Appl. Phys. (1)

E. J. Gillham, Brit. J. Appl. Phys. 4, 151 (1953).
[Crossref]

Bull. Bur. Standards (4)

W. W. Coblentz, Bull. Bur. Standards 12, 553 (1915–1916).
[Crossref]

W. W. Coblentz, Bull. Bur. Standards 10, 28 (1914).

W. W. Coblentz and W. B. Emerson, Bull. Bur. Standards 12, 503 (1915–1916).
[Crossref]

E. F. Mueller, Bull. Bur. Standards 13, 547 (1916–1917).
[Crossref]

J. Opt. Soc. Am. (1)

J. Research Natl. Bur. Standards (1)

H. F. Stimson, J. Research Natl. Bur. Standards 42, 209 (1949).
[Crossref]

Phys. Rev. Suppl. (1)

R. T. Birge, Phys. Rev. Suppl. 1, 1 (1929).

Physica (1)

G. A. W. Rutgers, Physica 17, 131 (1951).

Proc. Roy. Soc. (London) (1)

J. Guild, Proc. Roy. Soc. (London) A161, 1 (1937).

Rev. opt. (1)

A. Gouffé, Rev. opt. 24, 1 (1945).

Rev. Sci. Instr. (2)

M. Eppley, Rev. Sci. Instr. 3, 687 (1932).
[Crossref]

A. J. Jaffey, Rev. Sci. Instr. 25, 349–354 (1954).
[Crossref]

Trans. Am. Soc. Mech. Engrs. (1)

Snyder, Gier, and Dunkle, Trans. Am. Soc. Mech. Engrs. 77, 1011 (1955).

Verhandl. physik. Ges. (Berlin) (1)

O. Lummer and F. Kurlbaum, Verhandl. physik. Ges. (Berlin) 17, 106 (1898).

Z. Physik (1)

C. Müller, Z. Physik 82, 1 (1933).
[Crossref]

Other (1)

W. F. Roeser and H. T. Wensel in Temperature—Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Blackbody source unit.

Fig. 2
Fig. 2

Arrangement of the blackbody chamber and baffles in the alundum tube.

Fig. 3
Fig. 3

Plan for winding Nichrome ribbon on the alundum tube.

Fig. 4
Fig. 4

A mounted radiometer.

Fig. 5
Fig. 5

Horizontal section of the radiometer tube assembly.

Tables (1)

Tables Icon

Table I Results using different radiometers of this series.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W = σ π A 1 A 2 D 2 ( T 1 4 - T 0 4 )
I 2 R = σ π A 1 A 2 D 2 ( T 1 4 - T 0 4 )
I 2 R = ( I 1 / 2 ) 2 R 1 - ( I 0 / 2 ) 2 R 0