Abstract

Relative cone sensitivity measurements were made from 420 mμ to 700 mμ in the spectrum using 42 minute and 3 minute diameter test-light fields in the fovea and a 42 minute diameter field at 10° in the periphery. The data were analyzed with reference to (a) the suggestion that the humps found in the blue region of the spectrum result from the absorption of macular pigment, (b) changes in the over-all shape of the sensitivity function, and (c) the number of humps in the sensitivity function. Two humps were found below 500 mμ in the fovea, one in the orange, and possibly two or three between 500 mμ and 580 mμ. Consideration of the possible origin of the humps favored the conclusion that the humps in the blue region of the spectrum were contributed to by cone activity, since measurements at 10° in the periphery, where there is no pigment, produced an exaggerated hump in the blue below 470 mμ which could only be ascribed to cone activity. Systematic changes in the shape of the functions indicated little change in the long wavelength portion of the curves over the three stimulus conditions, but sizable changes in the relative sensitivity to the short wavelengths. The 10° periphery is increasingly more sensitive than the fovea as wavelengths become shorter than 520 mμ, while the 42′ foveal area is appreciably more sensitive than the 3′ area to blue wavelengths.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Gibson and K. P. T. Tyndall, Sci. Papers Bur. Standards 19, 131, S476 (1923).
    [Crossref]
  2. W. W. Coblentz and W. B. Emerson, Bull. Natl. Bur. Standards 14, 167, S303 (1918–1919).
    [Crossref]
  3. W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
    [Crossref]
  4. G. Wald, Science 101, 653 (1945).
    [Crossref] [PubMed]
  5. L. Sloan, Psychol. Monographs 38, 1 (1928).
  6. H. W. Walters and W. D. Wright, Proc. Roy. Soc. (London) B131, 340 (1943).
  7. W. S. Stiles, Ned. Tijdschr. Natuurk. 15, 125 (1949).
  8. Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
    [Crossref]
  9. L. C. Thomson, J. Physiol. 108, 78 (1949).
  10. W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
    [Crossref] [PubMed]
  11. I. G. H. Ishak, J. Opt. Soc. Am. 42, 529 (1952).
    [Crossref]
  12. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 43, 485 (1953).
    [Crossref] [PubMed]
  13. W. J. Crozier, J. Gen. Physiol. 34, 87 (1950).
  14. W. S. Stiles, Union Internationale de Physique Pure et Appliquée, Coloquio sobre Problemas Ópticos de la Visión, Madrid, 1953, pp. 66–103.
  15. D. Jameson and L. M. Hurvich, J. Opt. Soc. Am. 43, 552 (1953).
    [Crossref] [PubMed]
  16. R. M. Boynton, J. Opt. Soc. Am. 46, 172 (1956).
    [Crossref] [PubMed]
  17. E. Auerbach and G. Wald, Am. J. Ophthalmol. 39, 24 (1955).
    [PubMed]
  18. R. A. Weale, J. Physiol. 114, 435 (1951).
  19. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).
  20. W. D. Wright, Researches on Normal and Defective Color Vision (C. V. Mosby Company, St. Louis, 1947), p. 157.
  21. W. R. Miles, J. Neurophysiol. (to be published).
  22. Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).
  23. C. H. Graham and R. Margaria, Am. J. Physiol. 113, 302 (1935).
  24. H. W. Karn, J. Gen. Psychol. 59, 360 (1936).
    [Crossref]
  25. H. G. Sperling, J. Opt. Soc. Am. 44, 822(A) (1954).

1956 (1)

1955 (1)

E. Auerbach and G. Wald, Am. J. Ophthalmol. 39, 24 (1955).
[PubMed]

1954 (1)

H. G. Sperling, J. Opt. Soc. Am. 44, 822(A) (1954).

1953 (2)

1952 (3)

1951 (1)

R. A. Weale, J. Physiol. 114, 435 (1951).

1950 (1)

W. J. Crozier, J. Gen. Physiol. 34, 87 (1950).

1949 (2)

L. C. Thomson, J. Physiol. 108, 78 (1949).

W. S. Stiles, Ned. Tijdschr. Natuurk. 15, 125 (1949).

1945 (1)

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

1944 (1)

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[Crossref]

1943 (1)

H. W. Walters and W. D. Wright, Proc. Roy. Soc. (London) B131, 340 (1943).

1942 (1)

Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).

1936 (1)

H. W. Karn, J. Gen. Psychol. 59, 360 (1936).
[Crossref]

1935 (1)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 302 (1935).

1928 (1)

L. Sloan, Psychol. Monographs 38, 1 (1928).

1923 (1)

K. S. Gibson and K. P. T. Tyndall, Sci. Papers Bur. Standards 19, 131, S476 (1923).
[Crossref]

Auerbach, E.

E. Auerbach and G. Wald, Am. J. Ophthalmol. 39, 24 (1955).
[PubMed]

Boynton, R. M.

Coblentz, W. W.

W. W. Coblentz and W. B. Emerson, Bull. Natl. Bur. Standards 14, 167, S303 (1918–1919).
[Crossref]

Crozier, W. J.

W. J. Crozier, J. Gen. Physiol. 34, 87 (1950).

Emerson, W. B.

W. W. Coblentz and W. B. Emerson, Bull. Natl. Bur. Standards 14, 167, S303 (1918–1919).
[Crossref]

Gibson, K. S.

K. S. Gibson and K. P. T. Tyndall, Sci. Papers Bur. Standards 19, 131, S476 (1923).
[Crossref]

Graham, C. H.

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[Crossref]

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 302 (1935).

Hecht,

Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).

Hsia, Y.

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[Crossref]

Hurvich, L. M.

Ishak, I. G. H.

Jameson, D.

Karn, H. W.

H. W. Karn, J. Gen. Psychol. 59, 360 (1936).
[Crossref]

Margaria, R.

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 302 (1935).

Miles, W. R.

W. R. Miles, J. Neurophysiol. (to be published).

Pirenne,

Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

Shlaer,

Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).

Sloan, L.

L. Sloan, Psychol. Monographs 38, 1 (1928).

Sperling, H. G.

H. G. Sperling, J. Opt. Soc. Am. 44, 822(A) (1954).

Stiles, W. S.

W. S. Stiles, Ned. Tijdschr. Natuurk. 15, 125 (1949).

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[Crossref]

W. S. Stiles, Union Internationale de Physique Pure et Appliquée, Coloquio sobre Problemas Ópticos de la Visión, Madrid, 1953, pp. 66–103.

Thomson, L. C.

L. C. Thomson, J. Physiol. 108, 78 (1949).

Tyndall, K. P. T.

K. S. Gibson and K. P. T. Tyndall, Sci. Papers Bur. Standards 19, 131, S476 (1923).
[Crossref]

Wald, G.

E. Auerbach and G. Wald, Am. J. Ophthalmol. 39, 24 (1955).
[PubMed]

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

Walters, H. W.

H. W. Walters and W. D. Wright, Proc. Roy. Soc. (London) B131, 340 (1943).

Weale, R. A.

R. A. Weale, J. Physiol. 114, 435 (1951).

Wright, W. D.

W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
[Crossref] [PubMed]

H. W. Walters and W. D. Wright, Proc. Roy. Soc. (London) B131, 340 (1943).

W. D. Wright, Researches on Normal and Defective Color Vision (C. V. Mosby Company, St. Louis, 1947), p. 157.

Am. J. Ophthalmol. (1)

E. Auerbach and G. Wald, Am. J. Ophthalmol. 39, 24 (1955).
[PubMed]

Am. J. Physiol. (1)

C. H. Graham and R. Margaria, Am. J. Physiol. 113, 302 (1935).

Bull. Natl. Bur. Standards (1)

W. W. Coblentz and W. B. Emerson, Bull. Natl. Bur. Standards 14, 167, S303 (1918–1919).
[Crossref]

J. Gen. Physiol. (2)

W. J. Crozier, J. Gen. Physiol. 34, 87 (1950).

Hecht, Shlaer, and Pirenne, J. Gen. Physiol. 25, 819 (1942).

J. Gen. Psychol. (1)

H. W. Karn, J. Gen. Psychol. 59, 360 (1936).
[Crossref]

J. Opt. Soc. Am. (6)

J. Physiol. (2)

R. A. Weale, J. Physiol. 114, 435 (1951).

L. C. Thomson, J. Physiol. 108, 78 (1949).

Ned. Tijdschr. Natuurk. (1)

W. S. Stiles, Ned. Tijdschr. Natuurk. 15, 125 (1949).

Proc. Natl. Acad. Sci. (1)

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[Crossref]

Proc. Phys. Soc. (London) (1)

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[Crossref]

Proc. Roy. Soc. (London) (1)

H. W. Walters and W. D. Wright, Proc. Roy. Soc. (London) B131, 340 (1943).

Psychol. Monographs (1)

L. Sloan, Psychol. Monographs 38, 1 (1928).

Sci. Papers Bur. Standards (1)

K. S. Gibson and K. P. T. Tyndall, Sci. Papers Bur. Standards 19, 131, S476 (1923).
[Crossref]

Science (1)

G. Wald, Science 101, 653 (1945).
[Crossref] [PubMed]

Other (4)

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

W. D. Wright, Researches on Normal and Defective Color Vision (C. V. Mosby Company, St. Louis, 1947), p. 157.

W. R. Miles, J. Neurophysiol. (to be published).

W. S. Stiles, Union Internationale de Physique Pure et Appliquée, Coloquio sobre Problemas Ópticos de la Visión, Madrid, 1953, pp. 66–103.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relative cone sensitivity curves for four observers taken with central fixation with a 42′ diameter stimulus. Each successive curve has been lowered through one logarithmic unit.

Fig. 2
Fig. 2

Relative cone sensitivity curves for three observers taken at 10° from central fixation with a 42′ diameter stimulus. Each successive curve has been lowered through one logarithmic unit.

Fig. 3
Fig. 3

Relative cone sensitivity curves for three observers taken with central fixation with a 3′ diameter stimulus. Each successive curve has been lowered through one logarithmic unit.

Fig. 4
Fig. 4

Mean relative cone sensitivity curves for all observers. (a) Values for the 42′ diameter stimulus in the fovea connected by by dashed line, (b) values for the 3′ diameter stimulus in the fovea connected by the dotted line, (c) values for the 42′ diameter stimulus at 10° from the fovea connected by the solid line.

Fig. 5
Fig. 5

Relative sensitivity at 10° from central fixation to the spectrum 2, 10, and 13 min after adaptation to 5440 ft-L of 2848°K light. The dotted curve shows relative cone sensitivity taken just before the rod-cone break, for observer YH.

Fig. 6
Fig. 6

Relative sensitivity to the spectrum at 10° from central fixation 2, 10, and 13 min after adaptation to 5440 ft-L of 2848°K light. The dotted curve shows relative cone sensitivity taken just before the rod-cone break. The top curve (R) shows relative spectral sensitivity following 45 min of complete dark adaptation.

Fig. 7
Fig. 7

On the left the average 42′ and 3′ relative cone sensitivity curves are compared. On the right the average luminous efficiency curves for seven congenital tritanopes are compared with that of a normal observer, after Wright, 1952.10

Tables (2)

Tables Icon

Table I Average logarithms of relative cone sensitivity measured centrally and 10° from central fixation. All values in the table are negative. The negative sign has been omitted for ease of presentation. Each datum = log ( 1 / E T d ) + log K .Where ETd=relative energy required for the cones to respond to the spectral lights at absolute threshold, and d ranges from 420 mμ to 700 mμ,and K=an arbitrary constant chosen so that all numbers would have the same algebraic sign.

Tables Icon

Table II Logarithms of mean relative cone sensitivity data of all observers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Each datum = log ( 1 / E T d ) + log K .