Abstract

Interferometric wavelength measurements have been made on thirty-three lines of the 2–0 band of CO at 4260 cm−1. These measurements were made relative to R(18) of this band, which had previously been measured against the Hg198 green line, and have a relative accuracy of 1 part in 107. The R(6) line of the 3–0 band has also been measured interferometrically. These data, when combined with results of other investigators, give the following values for constants, all in cm−1:

B0=1.922521±0.0000035
D0=6.117×10−6±0.01×10−6
B2B0=−0.035008
D2D0=−1.9×10−9
Be=1.931285
αe=0.017535
γe=1.01×10−5
βe=−1.0×10−9
ωe=2169.829
xeωe=13.295
yeωe=0.0115.

The precise constants allow wavelengths to be calculated for the 1–0 band at 2143 cm−1. Since accurate measurements in this region are difficult to make, it is felt that these calculated values are more accurate than any measured values so far reported.

The value of B0, when combined with recent microwave results, gives for the velocity of light

c=299793.7±0.7km/sec.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
    [Crossref]
  2. Plyler, Blaine, and Connor, J. Opt. Soc. Am. 45, 102 (1955).
    [Crossref]
  3. L. Goldberg and E. A. Müller, Astrophys. J. 118, 397 (1953).
    [Crossref]
  4. Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
    [Crossref]
  5. G. Herzberg and K. N. Rao, J. Chem. Phys. 17, 1099 (1949).
    [Crossref]
  6. Rank, Guenther, Shearer, and Wiggins, J. Opt. Soc. Am. 47, 144 (1957).
    [Crossref]
  7. B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
    [Crossref]
  8. J. L. Dunham, Phys. Rev. 41, 721 (1932).
    [Crossref]
  9. W. Gordy (private communication).
  10. Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
    [Crossref]
  11. A. H. Nethercot and R. Rosenblum, Columbia Radiation Laboratory (Third Quarterly Progress Report for 1956).
  12. E. R. Cohen, J. W. M. Du Mond, and et al., Revs. Modern Phys. 27, 363 (1955).
    [Crossref]

1957 (1)

1955 (3)

E. R. Cohen, J. W. M. Du Mond, and et al., Revs. Modern Phys. 27, 363 (1955).
[Crossref]

Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
[Crossref]

Plyler, Blaine, and Connor, J. Opt. Soc. Am. 45, 102 (1955).
[Crossref]

1953 (2)

L. Goldberg and E. A. Müller, Astrophys. J. 118, 397 (1953).
[Crossref]

B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
[Crossref]

1952 (1)

Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
[Crossref]

1950 (1)

Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
[Crossref]

1949 (1)

G. Herzberg and K. N. Rao, J. Chem. Phys. 17, 1099 (1949).
[Crossref]

1932 (1)

J. L. Dunham, Phys. Rev. 41, 721 (1932).
[Crossref]

Bedard,

Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
[Crossref]

Benedict,

Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
[Crossref]

Blaine,

Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
[Crossref]

Plyler, Blaine, and Connor, J. Opt. Soc. Am. 45, 102 (1955).
[Crossref]

Cohen, E. R.

E. R. Cohen, J. W. M. Du Mond, and et al., Revs. Modern Phys. 27, 363 (1955).
[Crossref]

Connor,

Du Mond, J. W. M.

E. R. Cohen, J. W. M. Du Mond, and et al., Revs. Modern Phys. 27, 363 (1955).
[Crossref]

Dunham, J. L.

J. L. Dunham, Phys. Rev. 41, 721 (1932).
[Crossref]

Edlén, B.

Gallagher,

Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
[Crossref]

Goldberg, L.

L. Goldberg and E. A. Müller, Astrophys. J. 118, 397 (1953).
[Crossref]

Gordy, W.

W. Gordy (private communication).

Guenther,

Herzberg, G.

G. Herzberg and K. N. Rao, J. Chem. Phys. 17, 1099 (1949).
[Crossref]

Johnson,

Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
[Crossref]

Müller, E. A.

L. Goldberg and E. A. Müller, Astrophys. J. 118, 397 (1953).
[Crossref]

Nethercot, A. H.

A. H. Nethercot and R. Rosenblum, Columbia Radiation Laboratory (Third Quarterly Progress Report for 1956).

Plyler,

Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
[Crossref]

Plyler, Blaine, and Connor, J. Opt. Soc. Am. 45, 102 (1955).
[Crossref]

Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
[Crossref]

Rank,

Rao, K. N.

G. Herzberg and K. N. Rao, J. Chem. Phys. 17, 1099 (1949).
[Crossref]

Rosenblum, R.

A. H. Nethercot and R. Rosenblum, Columbia Radiation Laboratory (Third Quarterly Progress Report for 1956).

Shearer,

Silverman,

Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
[Crossref]

Tidwell,

Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
[Crossref]

Wiggins,

Astrophys. J. (1)

L. Goldberg and E. A. Müller, Astrophys. J. 118, 397 (1953).
[Crossref]

J. Chem. Phys. (2)

Plyler, Benedict, and Silverman, J. Chem. Phys. 20, 175 (1952).
[Crossref]

G. Herzberg and K. N. Rao, J. Chem. Phys. 17, 1099 (1949).
[Crossref]

J. Opt. Soc. Am. (3)

J. Research Natl. Bur. Standards (1)

Plyler, Blaine, and Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
[Crossref]

Phys. Rev. (2)

Bedard, Gallagher, and Johnson, Phys. Rev. 78, 140 (1950).
[Crossref]

J. L. Dunham, Phys. Rev. 41, 721 (1932).
[Crossref]

Revs. Modern Phys. (1)

E. R. Cohen, J. W. M. Du Mond, and et al., Revs. Modern Phys. 27, 363 (1955).
[Crossref]

Other (2)

A. H. Nethercot and R. Rosenblum, Columbia Radiation Laboratory (Third Quarterly Progress Report for 1956).

W. Gordy (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (3)

Tables Icon

Table I Interferometrically measured vacuum wavelengths of some absorption lines of carbon monoxide. Unless otherwise indicated the lines have been measured relative to R(18) of the 2–0 band of CO. The vacuum wavelengths λv have been measured in angstroms; wavelengths in standard air λs have been computed using the Edlén dispersion formula. The previously measured vacuum wavelength of R(18) may have an error of 1 in 5×106 in absolute value. The other lines have a relative accuracy of 1 in 107 with respect to the secondary standard with which they were compared.

Tables Icon

Table III Observed and calculated band centers.

Tables Icon

Table IV Calculated wavelengths in the 1–0 band of CO. Frequencies expressed in vacuum cm−1 of some CO absorption lines. They have been derived from the molecular constants determined in this paper. Standard air wavelengths λs have been computed using the Edlén dispersion formula. The observed frequencies are those of Plyler, Blaine, and Connor. Only lines presumably free from blends are listed.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

c = 299 793.7 ± 0.7 km / sec .
ν = ν 0 + ( B + B ) m + ( B - B - D + D ) m 2 - ( 2 D + 2 D - H - H ) m 3 - [ ( D - D ) - 3 ( H - H ) ] m 4 + 3 ( H + H ) m 5
R ( J - 1 ) - P ( J + 1 ) = Δ 2 F ( J ) = ( 4 B - 6 D + 27 H / 4 ) ( J + 1 2 ) - ( 8 D - 34 H ) ( J + 1 2 ) 3 + 12 H ( J + 1 2 ) 5 ,
R ( J - 1 ) + P ( J ) = 2 ν 0 + 2 ( B - B - D + D ) J 2 - 2 ( D - D ) J 4 .
H v H e = 2 D e 3 ω e 2 ( 12 B e 2 - α e ω e )
D e = 4 B e 3 / ω e 2 .
B v = B e - α e ( v + 1 2 ) + γ e ( v + 1 2 ) 2 .
ω e = 2169.829 x e ω e = 13.295 v e ω e = 0.0115.
ν 0 ( J = 0 1 ) = 115 271.236 ± 0.008 Mc / sec .
c = 299 793.7 km / sec ± 0.7 km / sec