Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.g., P. Lindberg, Optica Acta 1, 80 (1954).
    [Crossref]
  2. E.g., S. Goldman, Information Theory (New York, 1953), p. 278; T. P. Goodmann and J. B. Reswick, Trans. Am. Soc. Mech. Engrs. 78, 259 (1956).
  3. H. Ohzu and H. Kubota, J. Appl. Phys. Japan 26, No. 3 (1957).
  4. E. R. Kretzmer, Bell System Tech. J. 31, 751 (1952).
    [Crossref]
  5. O’Neill Tech, (1954).
  6. H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

1957 (1)

H. Ohzu and H. Kubota, J. Appl. Phys. Japan 26, No. 3 (1957).

1955 (1)

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

1954 (1)

E.g., P. Lindberg, Optica Acta 1, 80 (1954).
[Crossref]

1952 (1)

E. R. Kretzmer, Bell System Tech. J. 31, 751 (1952).
[Crossref]

Goldman, S.

E.g., S. Goldman, Information Theory (New York, 1953), p. 278; T. P. Goodmann and J. B. Reswick, Trans. Am. Soc. Mech. Engrs. 78, 259 (1956).

Hopkins, H. H.

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

Kretzmer, E. R.

E. R. Kretzmer, Bell System Tech. J. 31, 751 (1952).
[Crossref]

Kubota, H.

H. Ohzu and H. Kubota, J. Appl. Phys. Japan 26, No. 3 (1957).

Lindberg, P.

E.g., P. Lindberg, Optica Acta 1, 80 (1954).
[Crossref]

Ohzu, H.

H. Ohzu and H. Kubota, J. Appl. Phys. Japan 26, No. 3 (1957).

Tech, O’Neill

O’Neill Tech, (1954).

Bell System Tech. J. (1)

E. R. Kretzmer, Bell System Tech. J. 31, 751 (1952).
[Crossref]

J. Appl. Phys. Japan (1)

H. Ohzu and H. Kubota, J. Appl. Phys. Japan 26, No. 3 (1957).

Optica Acta (1)

E.g., P. Lindberg, Optica Acta 1, 80 (1954).
[Crossref]

Proc. Roy. Soc. (London) (1)

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

Other (2)

E.g., S. Goldman, Information Theory (New York, 1953), p. 278; T. P. Goodmann and J. B. Reswick, Trans. Am. Soc. Mech. Engrs. 78, 259 (1956).

O’Neill Tech, (1954).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Method of measurement of response function by means of random chart.

Fig. 2
Fig. 2

(a) Chart (P). (b) Autocorrelation function of P.

Fig. 3
Fig. 3

(a) Image of the chart P(P′). (b) Cross-correlation function between P and P′.

Fig. 4
Fig. 4

Response function.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

g ( x , y ) = - + f ( x , y ) h ( x - x , y - y ) d x d y ,
ϕ f , g ( t , s ) = 1 A A f ( x , y ) g ( x + t , y + s ) d x d y ,
ϕ f , g ( t , s ) = 1 A A [ f ( x , y ) - + h ( x , y ) × f ( x - x + t , y - y + s ) d x d y ] d x d y .
ϕ f , g ( t , s ) = - h ( x , y ) ϕ f , f ( t - x , s - y ) d x d y
Φ f , g ( u , v ) = H ( u , v ) Φ f , f ( u , v ) ,
ϕ f , f = exp { - π 4 ( t 0.38 ) 2 } ,
Φ f , f = exp { - π 4 ( f 0.66 ) 2 } .
H ( w ) = J 1 ( a w ) / a w ,