Abstract

The interferometric method of optical testing presents considerable advantages in view of the unequivocal nature of the information given and the self-calibrating nature of the test. However, difficulties are presented in practical applications of interferometers of the Twyman-Green type because of the necessity of providing a reference beam.

Two types of interferometer are described in which the reference beam follows the same path as the test beam, thus avoiding this difficulty. Some test results are given, illustrating a few of the applications of these instruments.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bates, Proc. Phys. Soc. (London) 59, 940–950 (1947).
    [Crossref]
  2. J. M. Burch, Nature,  171, 889 (1953).
    [Crossref]
  3. M. Banning, J. Opt. Soc. Am. 37, 792 (1947).
    [Crossref] [PubMed]

1953 (1)

J. M. Burch, Nature,  171, 889 (1953).
[Crossref]

1947 (2)

M. Banning, J. Opt. Soc. Am. 37, 792 (1947).
[Crossref] [PubMed]

W. J. Bates, Proc. Phys. Soc. (London) 59, 940–950 (1947).
[Crossref]

Banning, M.

Bates, W. J.

W. J. Bates, Proc. Phys. Soc. (London) 59, 940–950 (1947).
[Crossref]

Burch, J. M.

J. M. Burch, Nature,  171, 889 (1953).
[Crossref]

J. Opt. Soc. Am. (1)

Nature (1)

J. M. Burch, Nature,  171, 889 (1953).
[Crossref]

Proc. Phys. Soc. (London) (1)

W. J. Bates, Proc. Phys. Soc. (London) 59, 940–950 (1947).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

First type of interferometer.

Fig. 2
Fig. 2

Second type of instrument.

Fig. 3
Fig. 3

(a) Testing lens at infinite conjugates; (b) testing lens at finite conjugates; (c) testing lens off-axis; (d) testing plane-parallel plate.

Fig. 4
Fig. 4

Test setup for wind-tunnel applications.

Fig. 5
Fig. 5

(a) Six-inch astronomical reflector. (b) The same triplet displaced along axis from center of curvature [see Fig. 5(a)].

Fig. 6
Fig. 6

(a) Eight-mm, 0.5 N.A. microscope objective at center of field. (b) Same as Fig. 6(a) but 0.15 mm from center of field.

Fig. 7
Fig. 7

(a) Wide-angle photographic objective, 45° off axis. (b) Candle flame.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c = 8 ( p e - p 0 ) α 4 x / h = 8 ( p e - p 0 ) α 3 x / f .
x = n λ / 4 α .
n = f c / 2 ( p e - p 0 ) α 2 λ .
n = 0.0316 / α 2 .