Abstract

Some of the optical problems connected with an artificial earth satellite are: visibility, the photographic determination of the precise orbit, and the temperature that the satellite will reach through radiation exchange. These matters are discussed with particular reference to the plans for the satellites to be launched by the United States during the International Geophysical Year. One of the first experiments to be flown will be the monitoring of the Lyman alpha line radiation of hydrogen emitted by the sun and the measurement of intensity variations associated with solar flares.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Russell, Astrophys. J. 43, 173 (1916).
    [Crossref]
  2. R. Tousey, Astronautica Acta,  2, 101 (1956).
  3. Koomen, Lock, Packer, Scolnik, Tousey, and Hulburt, J. Opt. Soc. Am. 42, 353 (1952).
    [Crossref]
  4. R. Tousey and E. O. Hulburt, J. Opt. Soc. Am. 38, 886 (1946).
    [Crossref]
  5. Smithsonian Astrophysical Observatory, “Bulletin for visual observers of satellites,” Nos. 1, 2, and 3 in Sky and Telescope, July, October, and November, 1956.
  6. J. T. Mengel, Proc. Inst. Radio. Engrs. 44, 755 (1956).
  7. R. L. Easton, Q. S. T. 40, 38 (1956).
  8. F. L. Whipple and J. A. Hynek, Proc. Inst. Radio. Engrs. 44, 760 (1956).
  9. G. Hass and C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954).
    [Crossref]
  10. Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
    [Crossref]

1956 (5)

J. T. Mengel, Proc. Inst. Radio. Engrs. 44, 755 (1956).

R. L. Easton, Q. S. T. 40, 38 (1956).

F. L. Whipple and J. A. Hynek, Proc. Inst. Radio. Engrs. 44, 760 (1956).

R. Tousey, Astronautica Acta,  2, 101 (1956).

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

1954 (1)

1952 (1)

1946 (1)

1916 (1)

H. N. Russell, Astrophys. J. 43, 173 (1916).
[Crossref]

Byram,

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

Chubb,

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

Easton, R. L.

R. L. Easton, Q. S. T. 40, 38 (1956).

Friedman,

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

Hass, G.

Hulburt,

Hulburt, E. O.

Hynek, J. A.

F. L. Whipple and J. A. Hynek, Proc. Inst. Radio. Engrs. 44, 760 (1956).

Koomen,

Kupperian,

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

Lock,

Mengel, J. T.

J. T. Mengel, Proc. Inst. Radio. Engrs. 44, 755 (1956).

Packer,

Russell, H. N.

H. N. Russell, Astrophys. J. 43, 173 (1916).
[Crossref]

Salzberg, C. D.

Scolnik,

Tousey,

Tousey, R.

R. Tousey, Astronautica Acta,  2, 101 (1956).

R. Tousey and E. O. Hulburt, J. Opt. Soc. Am. 38, 886 (1946).
[Crossref]

Whipple, F. L.

F. L. Whipple and J. A. Hynek, Proc. Inst. Radio. Engrs. 44, 760 (1956).

Astronautica Acta (1)

R. Tousey, Astronautica Acta,  2, 101 (1956).

Astrophys. J. (2)

H. N. Russell, Astrophys. J. 43, 173 (1916).
[Crossref]

Byram, Chubb, Friedman, and Kupperian, Astrophys. J. 124, 480 (1956).
[Crossref]

J. Opt. Soc. Am. (3)

Proc. Inst. Radio. Engrs. (2)

F. L. Whipple and J. A. Hynek, Proc. Inst. Radio. Engrs. 44, 760 (1956).

J. T. Mengel, Proc. Inst. Radio. Engrs. 44, 755 (1956).

Q. S. T. (1)

R. L. Easton, Q. S. T. 40, 38 (1956).

Other (1)

Smithsonian Astrophysical Observatory, “Bulletin for visual observers of satellites,” Nos. 1, 2, and 3 in Sky and Telescope, July, October, and November, 1956.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The visibility of the satellite will increase as twilight progresses, reaching a maximum for solar depressions from 15° to 18°.

Fig. 2
Fig. 2

The satellite will be visible, once a day, over visibility belts swept out by the intersection of the orbit and the twilight zone.

Fig. 3
Fig. 3

The angular distribution of luminosity of diffuse and specular spherical reflectors illuminated by parallel light.

Fig. 4
Fig. 4

The stellar magnitude of a 20-in. satellite at 200 mi altitude viewed at different zenith angles, compared with the visual threshold of the unaided eye. The surface is assumed to be specular and to have 90% reflectance; the sun is 15° below the horizon.

Fig. 5
Fig. 5

Some stars in Ursa Minor that can be used as objects to test one’s vision. The satellite will always be fainter than 5.0, the magnitude of the star forming the inside lower corner of the Little Dipper.

Fig. 6
Fig. 6

The radiation streams upon which the temperature of the satellite depends. Streams E and ER are sunlight; streams Je and Js are low temperature thermal radiation.

Fig. 7
Fig. 7

The reflectance of polished magnesium, before and after coating with SiO.

Fig. 8
Fig. 8

The nitric oxide filled ion chamber to be flown in a satellite to monitor the intensity of the Lyman alpha line radiation from the sun.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

specular : I = ( R 2 / 4 ) E , diffuse : I = ( 2 R 2 / 3 π ) [ sin θ + ( π - θ ) cos θ ] · E ,
E a + E R a + J e = J s = σ T 4 ,
d F d Ω = E · 2 π x d x 4 π sin 2 i d i .
d F d Ω = E R 2 4 .