Abstract

A new method has been devised for measuring refractive indexes of crystals in the visible and infrared region. In this method thermocouples with CaF2 or KBr windows have been used to detect the chopped (10 c/s) refracted beam. Single synthetic crystals of CdS and ZnS grown by the vapor phase method have been examined from their absorption cutoffs to 1.4μ. In comparing the results obtained, in the visible region, to the visual method of determining refractive indexes, the thermocouple detector method has duplicated these to within an index of refraction of ±0.001. For data extended to the infrared region it is found that the calculated results compare very closely with the experimental data. Index of refraction measurements may now be extended considerably into the infrared region being limited only by the sensitivity of the detector and the intensity of the transmitted monochromatic beam.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Czyzak, Reynolds, Allen, and Reynolds, J. Opt. Soc. Am. 44, 864 (1954).
    [Crossref]
  2. Reynolds, Czyzak, Allen, and Reynolds, J. Opt. Soc. Am. 45, 136 (1955).
    [Crossref]
  3. H. E. Merwin, Am. J. Sci. 34, 341 (1912).
  4. J. R. Devore, J. Opt. Soc. Am. 41, 416 (1951).
    [Crossref]
  5. J. F. Hall and W. F. C. Ferguson, J. Opt. Soc. Am. 45, 74, 714 (1955).
    [Crossref]
  6. A. H. Pfund, J. Opt. Soc. Am. 29, 291 (1939).
    [Crossref]
  7. F. W. Paul, J. Opt. Soc. Am. 36, 175 (1946).
    [Crossref] [PubMed]
  8. W. M. Baker and S. J. Czyzak, Am. J. Phys. 24, 524 (1956).
    [Crossref]
  9. Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”
  10. J. H. Gisolf, Physica 6, 84 (1939).
    [Crossref]
  11. D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
    [Crossref]
  12. W. W. Piper, Phys. Rev. 92, 23 (1953).
    [Crossref]
  13. R. Frerichs, Phys. Rev. 72, 594 (1947).
    [Crossref]
  14. Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
    [Crossref]

1956 (1)

W. M. Baker and S. J. Czyzak, Am. J. Phys. 24, 524 (1956).
[Crossref]

1955 (2)

1954 (1)

1953 (1)

W. W. Piper, Phys. Rev. 92, 23 (1953).
[Crossref]

1952 (1)

Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
[Crossref]

1951 (1)

1950 (1)

D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
[Crossref]

1947 (1)

R. Frerichs, Phys. Rev. 72, 594 (1947).
[Crossref]

1946 (1)

1939 (2)

1912 (1)

H. E. Merwin, Am. J. Sci. 34, 341 (1912).

Allen,

Baker,

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

Baker, W. M.

W. M. Baker and S. J. Czyzak, Am. J. Phys. 24, 524 (1956).
[Crossref]

Craig,

Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
[Crossref]

Crane,

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

Czyzak,

Reynolds, Czyzak, Allen, and Reynolds, J. Opt. Soc. Am. 45, 136 (1955).
[Crossref]

Czyzak, Reynolds, Allen, and Reynolds, J. Opt. Soc. Am. 44, 864 (1954).
[Crossref]

Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
[Crossref]

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

Czyzak, S. J.

W. M. Baker and S. J. Czyzak, Am. J. Phys. 24, 524 (1956).
[Crossref]

D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
[Crossref]

Devore, J. R.

Ferguson, W. F. C.

Frerichs, R.

R. Frerichs, Phys. Rev. 72, 594 (1947).
[Crossref]

Gisolf, J. H.

J. H. Gisolf, Physica 6, 84 (1939).
[Crossref]

Hall, J. F.

Ignatowski,

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

McCain,

Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
[Crossref]

Merwin, H. E.

H. E. Merwin, Am. J. Sci. 34, 341 (1912).

Paul, F. W.

Payne,

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

Pfund, A. H.

Piper, W. W.

W. W. Piper, Phys. Rev. 92, 23 (1953).
[Crossref]

Reynolds,

Reynolds, D. C.

D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
[Crossref]

Am. J. Phys. (1)

W. M. Baker and S. J. Czyzak, Am. J. Phys. 24, 524 (1956).
[Crossref]

Am. J. Sci. (1)

H. E. Merwin, Am. J. Sci. 34, 341 (1912).

J. Appl. Phys. (1)

Czyzak, Craig, McCain, and Reynolds, J. Appl. Phys. 23, 923 (1952).
[Crossref]

J. Opt. Soc. Am. (6)

Phys. Rev. (3)

D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).
[Crossref]

W. W. Piper, Phys. Rev. 92, 23 (1953).
[Crossref]

R. Frerichs, Phys. Rev. 72, 594 (1947).
[Crossref]

Physica (1)

J. H. Gisolf, Physica 6, 84 (1939).
[Crossref]

Other (1)

Czyzak, Baker, Crane, Payne, and Ignatowski, , “The study of properties of single crystals for use as detectors and crystal counters.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus for measuring refractive indexes. Bausch & Lomb Monochromator (1), 10 c/s chopper (2), light shield for crystal stage (3), crystal stage (4), light source (5), power supply (6), thermocouple adapter housing with thermocouple in place (7).

Fig. 2
Fig. 2

Refractive index curve for cubic ZnS single crystal.

Fig. 3
Fig. 3

Refractive index curve for hexagonal CdS single crystal, ordinary ray.

Fig. 4
Fig. 4

Refractive index curve for hexagonal CdS single crystal, extraordinary ray.

Tables (2)

Tables Icon

Table I Measured (η0) and calculated (ηc) values of the refractive index of ZnS. The calculated values (η) of Devorea are shown for comparison.

Tables Icon

Table II Measured (η0) and calculated (ηc) values of the refractive index of double refracting CdS crystals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η 2 = a + b / λ 2 - λ 0 2 ,
η 2 = 5.131 + 1.275 × 10 7 / λ 2 - 0.732 × 10 7 ,
η 2 = 5.235 + 1.819 × 10 7 / λ 2 - 1.651 × 10 7 .
η 2 = 5.239 + 2.076 × 10 7 / λ 2 - 1.651 × 10 7 .