Abstract

The refractive index of standard air has been tabulated for the range 0.2 to 20.0 μ, namely, 0.2(0.01)0.8; 0.8(0.1)2.0; 2.0(0.5)10.0; 10(1)20 μ. The values are based on Edlen’s formula. For computations of Rayleigh scattering, the scattering cross sections, the mass and volume scattering coefficients have been tabulated for the same values of wavelength as for the refractive index. The optical thickness and the transmissivity of the standard atmosphere is given next, and finally, the mean scattering coefficient for visual observations which is βv=1.23×10−7 (cm−1).

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
    [Crossref]
  2. Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
    [Crossref]
  3. D. H. Rank and J. N. Shearer, J. Opt. Soc. Am. 44, 575 (1954).
  4. L. Essen, Proc. Phys. Soc. (London) 66B, 189 (1953).
  5. G. Grimminger, (Rand Corporation, Santa Monica, California, 1948).
  6. R. J. List, Smithsonian Meterological Tables (Smithsonian Institute, Washington, D. C., 1951), 6th revised edition, pp. 442–443.
  7. See reference 6, p. 415.
  8. R. Tousey and E. O. Hulbert, J. Opt. Soc. Am. 37, 78 (1947).
    [Crossref]

1954 (1)

1953 (3)

L. Essen, Proc. Phys. Soc. (London) 66B, 189 (1953).

B. Edlén, J. Opt. Soc. Am. 43, 339 (1953).
[Crossref]

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

1947 (1)

Bennett,

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

Edlén, B.

Essen, L.

L. Essen, Proc. Phys. Soc. (London) 66B, 189 (1953).

Grimminger, G.

G. Grimminger, (Rand Corporation, Santa Monica, California, 1948).

Hulbert, E. O.

List, R. J.

R. J. List, Smithsonian Meterological Tables (Smithsonian Institute, Washington, D. C., 1951), 6th revised edition, pp. 442–443.

Rank,

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

Rank, D. H.

Shearer, J. N.

Shull,

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

Tousey, R.

Wiggins,

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

J. Opt. Soc. Am. (3)

Proc. Phys. Soc. (London) (1)

L. Essen, Proc. Phys. Soc. (London) 66B, 189 (1953).

T. Opt. Soc. Am. (1)

Rank, Shull, Bennett, and Wiggins, T. Opt. Soc. Am. 43, 952 (1953).
[Crossref]

Other (3)

G. Grimminger, (Rand Corporation, Santa Monica, California, 1948).

R. J. List, Smithsonian Meterological Tables (Smithsonian Institute, Washington, D. C., 1951), 6th revised edition, pp. 442–443.

See reference 6, p. 415.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (6)

Tables Icon

Table I Refractive indexes n of standard air for selected air temperatures t.

Tables Icon

Table II Depolarization factor ρn of atmospheric gases for incident unpolarized light.

Tables Icon

Table III Rayleigh scattering cross section σ and Rayleigh scattering coefficients κ and β for t0=0°C and p=1013.25 mb.

Tables Icon

Table IV Rayleigh’s phase function p(cosθ), the angular Rayleigh scattering cross section for air assuming isotropic and anisotropic molecules for 0(1°)180° for visual observations (λ=0.55 μ).

Tables Icon

Table V (ns2−1)2 for standard air at air temperature t=15°C.

Tables Icon

Table VI The optical thickness u and the transmissivity τ for a standard atmosphere (isothermal atmosphere).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

( n s - 1 ) 10 - 8 = 6432.8 + 2949810 146 - ν 2 + 25540 41 - ν 2 ,
( n - 1 ) = ( n s - 1 ) ( 1 + α t s 1 + α t ) p p s ,
σ = 8 π 3 ( n s 2 - 1 ) 2 3 λ 4 N s 2 ( 6 + 3 ρ n 6 - 7 ρ n ) ,
κ = 8 π 3 3 ( n s 2 - 1 ) 2 N λ 4 N s 2 ρ ( 6 + 3 ρ n 6 - 7 ρ n ) ,
β = 8 π 3 3 ( n s 2 - 1 ) 2 N λ 4 N s 2 ( 6 + 3 ρ n 6 - 7 ρ n ) ,
β = 32 π 3 ( n - 1 ) 2 3 λ 4 N ( 6 + 3 ρ n 6 - 7 ρ n ) ,
σ R θ = π 2 ( n s 2 - 1 ) 2 2 ( 2 + ρ n ) λ 4 N s 2 ( 6 - 7 ρ n ) ρ ( cos θ )
σ R θ = 1.07558 × 10 - 38 p ( cos θ ) ( n s 2 - 1 ) 2 / λ 4
p ( cos θ ) = 0.7629 ( 1 + 0.932 cos 2 θ )
σ R θ ( λ = 0.55 μ ) = 3.6301 × 10 - 29 p ( cos θ ) .
σ ( 1 ) R θ = π 2 2 ( n s 2 - 1 ) 2 λ 4 N s 2 ( 1 + cos 2 θ )
σ ( 1 ) R θ = 7.6044 × 10 - 39 ( n s 2 - 1 ) 2 ( 1 + cos 2 θ ) / λ 4 .
σ ( 1 ) R θ ( λ = 0.55 μ ) = 2.5665 × 10 - 29 ( 1 + cos 2 θ )
N T = N 0 T 0
β = σ N 0 ( T 0 / T ) = β 0 ( T 0 / T ) .
n s 2 - 1 4 π N s = n 2 - 1 4 π N = const .
β = 8 π 3 3 ( n 2 - 1 ) 2 λ 4 N ( 6 + 3 ρ n ) ( 6 - 7 ρ n ) .
u ( s , s ) = s s β d s ,
u = 0 β d h = σ 0 N d h
N = N 0 e - h / H
τ = e - u
β v = 0 I λ ψ λ β λ d λ / 0 I λ ψ λ d λ ,
σ v = 0 I λ ψ λ σ λ d λ / 0 I λ ψ λ d λ .
β v = σ v N = σ v ( p / k T ) .