Abstract

A study of the Zeeman effect of absorption lines of GdCl3·6H2O and its dependence on the orientation of the crystal has given the constants for the magnetic ellipsoids for the ground state and 11 excited states. Evidence is presented for identifying the first three absorption groups as transitions from 8S to 6P7/2, 6P5/2, and 6I7/2. The magnetic observations were made at 77°K, 4.2°K, and 1.7°K and field-free spectra also taken at 195°K and 273°K. Very strong fluorescence is observed from the lowest excited state to the ground state.

The magnetic axes are approximately but not exactly the same for all observed states. The direction of maximum susceptibility is not that of the twofold crystal axis but perpendicular to it. There are small but definite deviations from isotropic magnetic behavior for the ground state.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); J. Am. Chem. Soc. 52, 3747 (1930); J. Am. Chem. Soc. 55, 496 (1933); Phys. Rev. 38, 670 (1931).
    [Crossref]
  2. G. C. Nutting and F. H. Spedding, J. Chem. Phys. 5, 33 (1937). F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55, 496 (1933).
    [Crossref]
  3. F. H. Spedding, J. Chem. Phys. 1, 144 (1933).
    [Crossref]
  4. G. H. Dieke and L. Heroux, Phys. Rev. 103, 1227 (1956); (1955).
    [Crossref]
  5. C. Petty, Johns Hopkins dissertation, 1956 (to be published).
  6. G. H. Dieke and H. M. Crosswhite, J. Opt. Soc. Am. 46, 885 (1956).
    [Crossref]
  7. A. Pabst, Am. J. Sci. 22, 426 (1931).
    [Crossref]
  8. L. A. Hall, dissertation, The Johns Hopkins University, 1956 (to be published).
  9. R. Tomaschek and E. Mehnert, Ann. phys. 29, 306 (1937).
    [Crossref]
  10. Chr. K. Jørgensen, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 29, No. 11 (1955).
  11. For a general review see K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304 (1955); B. Bleany and K. W. Stevens, Repts. Progr. in Phys. 16, 180 (1953).
    [Crossref]
  12. R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 387 (1953).
  13. G. S. Bogle and V. Heine, Proc. Phys. Soc. (London) A67, 734 (1954).

1956 (2)

G. H. Dieke and L. Heroux, Phys. Rev. 103, 1227 (1956); (1955).
[Crossref]

G. H. Dieke and H. M. Crosswhite, J. Opt. Soc. Am. 46, 885 (1956).
[Crossref]

1955 (2)

Chr. K. Jørgensen, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 29, No. 11 (1955).

For a general review see K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304 (1955); B. Bleany and K. W. Stevens, Repts. Progr. in Phys. 16, 180 (1953).
[Crossref]

1954 (1)

G. S. Bogle and V. Heine, Proc. Phys. Soc. (London) A67, 734 (1954).

1953 (1)

R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 387 (1953).

1937 (2)

R. Tomaschek and E. Mehnert, Ann. phys. 29, 306 (1937).
[Crossref]

G. C. Nutting and F. H. Spedding, J. Chem. Phys. 5, 33 (1937). F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55, 496 (1933).
[Crossref]

1933 (1)

F. H. Spedding, J. Chem. Phys. 1, 144 (1933).
[Crossref]

1931 (1)

A. Pabst, Am. J. Sci. 22, 426 (1931).
[Crossref]

1929 (1)

S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); J. Am. Chem. Soc. 52, 3747 (1930); J. Am. Chem. Soc. 55, 496 (1933); Phys. Rev. 38, 670 (1931).
[Crossref]

Bogle, G. S.

G. S. Bogle and V. Heine, Proc. Phys. Soc. (London) A67, 734 (1954).

Bowers, K. D.

For a general review see K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304 (1955); B. Bleany and K. W. Stevens, Repts. Progr. in Phys. 16, 180 (1953).
[Crossref]

Crosswhite, H. M.

Dieke, G. H.

G. H. Dieke and H. M. Crosswhite, J. Opt. Soc. Am. 46, 885 (1956).
[Crossref]

G. H. Dieke and L. Heroux, Phys. Rev. 103, 1227 (1956); (1955).
[Crossref]

Elliot, R. J.

R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 387 (1953).

Freed, S.

S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); J. Am. Chem. Soc. 52, 3747 (1930); J. Am. Chem. Soc. 55, 496 (1933); Phys. Rev. 38, 670 (1931).
[Crossref]

Hall, L. A.

L. A. Hall, dissertation, The Johns Hopkins University, 1956 (to be published).

Heine, V.

G. S. Bogle and V. Heine, Proc. Phys. Soc. (London) A67, 734 (1954).

Heroux, L.

G. H. Dieke and L. Heroux, Phys. Rev. 103, 1227 (1956); (1955).
[Crossref]

Jørgensen, Chr. K.

Chr. K. Jørgensen, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 29, No. 11 (1955).

Mehnert, E.

R. Tomaschek and E. Mehnert, Ann. phys. 29, 306 (1937).
[Crossref]

Nutting, G. C.

G. C. Nutting and F. H. Spedding, J. Chem. Phys. 5, 33 (1937). F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55, 496 (1933).
[Crossref]

Owen, J.

For a general review see K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304 (1955); B. Bleany and K. W. Stevens, Repts. Progr. in Phys. 16, 180 (1953).
[Crossref]

Pabst, A.

A. Pabst, Am. J. Sci. 22, 426 (1931).
[Crossref]

Petty, C.

C. Petty, Johns Hopkins dissertation, 1956 (to be published).

Spedding, F. H.

G. C. Nutting and F. H. Spedding, J. Chem. Phys. 5, 33 (1937). F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55, 496 (1933).
[Crossref]

F. H. Spedding, J. Chem. Phys. 1, 144 (1933).
[Crossref]

S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); J. Am. Chem. Soc. 52, 3747 (1930); J. Am. Chem. Soc. 55, 496 (1933); Phys. Rev. 38, 670 (1931).
[Crossref]

Stevens, K. W. H.

R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 387 (1953).

Tomaschek, R.

R. Tomaschek and E. Mehnert, Ann. phys. 29, 306 (1937).
[Crossref]

Am. J. Sci. (1)

A. Pabst, Am. J. Sci. 22, 426 (1931).
[Crossref]

Ann. phys. (1)

R. Tomaschek and E. Mehnert, Ann. phys. 29, 306 (1937).
[Crossref]

J. Chem. Phys. (2)

G. C. Nutting and F. H. Spedding, J. Chem. Phys. 5, 33 (1937). F. H. Spedding and G. C. Nutting, J. Am. Chem. Soc. 55, 496 (1933).
[Crossref]

F. H. Spedding, J. Chem. Phys. 1, 144 (1933).
[Crossref]

J. Opt. Soc. Am. (1)

Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. (1)

Chr. K. Jørgensen, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 29, No. 11 (1955).

Phys. Rev. (2)

S. Freed and F. H. Spedding, Phys. Rev. 34, 945 (1929); J. Am. Chem. Soc. 52, 3747 (1930); J. Am. Chem. Soc. 55, 496 (1933); Phys. Rev. 38, 670 (1931).
[Crossref]

G. H. Dieke and L. Heroux, Phys. Rev. 103, 1227 (1956); (1955).
[Crossref]

Proc. Phys. Soc. (London) (1)

G. S. Bogle and V. Heine, Proc. Phys. Soc. (London) A67, 734 (1954).

Proc. Roy. Soc. (London) (1)

R. J. Elliot and K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 387 (1953).

Repts. Progr. in Phys. (1)

For a general review see K. D. Bowers and J. Owen, Repts. Progr. in Phys. 18, 304 (1955); B. Bleany and K. W. Stevens, Repts. Progr. in Phys. 16, 180 (1953).
[Crossref]

Other (2)

C. Petty, Johns Hopkins dissertation, 1956 (to be published).

L. A. Hall, dissertation, The Johns Hopkins University, 1956 (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The A group of several Gd salts at various temperatures. Note that the long wavelength component of the mixed chloride appears in emission.

Fig. 2
Fig. 2

Temperature shifts of typical lines of GdCl3·6H2O. The dotted curve presents the change in the over-all width of the A group.

Fig. 3
Fig. 3

Zeeman patterns of the A group with the twofold axis along the line of sight and the crystal rotated about this axis (χ varied) T=77°K.

Fig. 4
Fig. 4

Zeeman patterns of the A group with the twofold axis nearly parallel to the magnetic field (θ~0).

Fig. 5
Fig. 5

Zeeman patterns with various magentic separations in the upper state. In (e) and (f) changes in the transition probabilities have been taken into account which are neglected in the other diagrams.

Fig. 6
Fig. 6

Change of the Zeeman pattern of the A4 line with rotation of the crystal. Where the curves are dotted the lines are too weak to be observed. The deviations from uniformity of the ground state separations were neglected.

Fig. 7
Fig. 7

Magnetic splitting of the four components of the A group as function of the crystal rotation (θ=φ=90°) H=35 000 gauss, s in cm−1.

Fig. 8
Fig. 8

Energy level diagram of Gd+++. The Stark splittings are not given but the total widths of the patterns in GdCl3·6H2O are indicated by the widths of the lines.

Fig. 9
Fig. 9

A4 line for θ=φ=90°, χ=44° showing the nonuniform spacing of the Zeeman components of the ground state. The ground state components are labeled 1 to 8.

Fig. 10
Fig. 10

Fine structure of the ground state produced by the interaction of the residual orbital momentum with the crystal field. The field free structure should be that at χ=25°.

Tables (3)

Tables Icon

Table I Wave numbers of the lines in the A, B, and C groups of GdCl3·6H2O at various temperatures.

Tables Icon

Table II Magnetic constants of the excited states of GdCl3·6H2O.

Tables Icon

Table III Ground state Zeeman intervals. H=35 000 gauss.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

s = 2 M g .
ψ 1 = a 1 ψ 1 0 + a 2 ψ 2 0 ( ψ 1 0 belongs to M = M 1 , ψ 2 0 to M = M 2 ) ,
s 1 = 2 g [ a 1 2 M 1 + a 2 2 M 2 ] .
M 2 = M 1 ± 1             and             M 2 = - M 1 ± 1.
E 1 = f 1 - h 1 = f 1 - 7 2 g β H = f 1 - 7 β H , E 8 = f 1 + h 1 = f 1 + 7 2 g β H = f 1 + 7 β H , etc .
d 1 = f 2 - f 1 + ( h 2 - h 1 ) = f 2 - f 1 + 2 β H             d 7 = - ( f 2 - f 1 ) + 2 β H , d 2 = f 3 - f 2 + ( h 3 - h 2 ) = f 3 - f 2 + 2 β H             d 6 = - ( f 3 - f 2 ) + 2 β H , etc .
d 1 + d 7 = 2 ( h 2 - h 1 ) = 4 β H             d 1 - d 7 = 2 ( f 2 - f 1 ) , d 2 + d 6 = 2 ( h 3 - h 2 ) = 4 β H             d 2 - d 6 = 2 ( f 3 - f 2 ) , etc .
16 g β H = d 1 + d 7 + 2 ( d 2 + d 6 ) + 3 ( d 3 + d 5 ) + 4 d 4 .
E = C + u M 2 ± g β M H
u = - D cos 2 ( χ - χ 0 ) ,
f = D cos 2 ( χ - χ 0 ) [ M 2 - 1 3 S ( S + 1 ) ] ,