Abstract

Fluorescent whitening agents improve the appearance of cloth or paper through two separate visual effects, a bluing effect and a lightening effect; the former is much more important than the latter. For any one shade of whitener, both the bluing and lightening effects are directly proportional to the effective fluorescence (defined here as the sum of the tristimulus values of the fluorescent light from the dyeing). However, when whiteners of different shades are compared at the same effective fluorescence, the greener-shade whitener has more of a lightening effect, but the redder-shade whitener has more of a bluing effect. These two advantages, one for the greener shade and the other for the redder shade, almost exactly cancel each other, so that at the same effective fluorescence both whiteners improve the cloth to the same degree. Effective fluorescence, as here defined, is therefore a reliable indication of whitening power irrespective of shade. This quantity may be measured on a fluorimeter, but an appropriate correction factor must be applied when two different whiteners are being compared.

© 1957 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Stearns, Cooke, and Millson, Optical Bleaches in Household Soaps and Detergents (, American Cyanamid Company, Bound Brook, New Jersey).
  2. H. E. Millson and E. I. Stearns, Am. Dyestuff Reptr. 37, 423–432 (1948).
  3. A. Landolt, Am. Dyestuff Reptr. 38, 353–356 (1949).
  4. C. Pinte and P. Rochas, Bull. inst. textile France27, 25–45; Bull. inst. textile France28, 39–51; Bull. inst. textile France 29, 9–24 (1951).
  5. O. Uhl, Fette u. Seifen 53, 84–88 (1951).
    [Crossref]
  6. A. Yabe, Nat. Sci. Rept. Ochanomizu Univ. 2, 142–147 (1951).
  7. E. C. Caspar, Melliand Textilber. 33, 518–521 (1952).
  8. O. L. Sherburne and J. P. G. Beiswanger, Am. Dyestuff Reptr. 41, P144–P148 (1952).
  9. R. S. Hunter, J. Opt. Soc. Am. 45, 404(A) (1955).
  10. M. S. Furry and P. L. Bensing, Am. Dyestuff Reptr. 44, P786–P790 (1955).
  11. D. L. MacAdam, J. Opt. Soc. Am. 24, 188–191 (1934).
    [Crossref]
  12. D. L. MacAdam, J. Opt. Soc. Am. 33, 22–23 (1943).
  13. D. L. MacAdam, J. Opt. Soc. Am. 33, 19–21 (1943).
  14. H. R. Davidson and J. J. Hanlon, J. Opt. Soc. Am. 45, 617–620 (1955).
    [Crossref]
  15. W. E. K. Middleton, unpublished report to the Inter-Society Color Council Subcommittee for Problem 18, Colorimetry of Fluorescent Materials, dated March22, 1954. A somewhat smaller reproduction of this curve is given in J. Opt. Soc. Am. 44, 797 (1954), curve for energy distribution of an overcast sky over a hypothetical urban area.
  16. S. N. Glarum and S. E. Penner, Am. Dyestuff Reptr. 43, P310–P314 (1954).

1955 (3)

R. S. Hunter, J. Opt. Soc. Am. 45, 404(A) (1955).

M. S. Furry and P. L. Bensing, Am. Dyestuff Reptr. 44, P786–P790 (1955).

H. R. Davidson and J. J. Hanlon, J. Opt. Soc. Am. 45, 617–620 (1955).
[Crossref]

1954 (1)

S. N. Glarum and S. E. Penner, Am. Dyestuff Reptr. 43, P310–P314 (1954).

1952 (2)

E. C. Caspar, Melliand Textilber. 33, 518–521 (1952).

O. L. Sherburne and J. P. G. Beiswanger, Am. Dyestuff Reptr. 41, P144–P148 (1952).

1951 (2)

O. Uhl, Fette u. Seifen 53, 84–88 (1951).
[Crossref]

A. Yabe, Nat. Sci. Rept. Ochanomizu Univ. 2, 142–147 (1951).

1949 (1)

A. Landolt, Am. Dyestuff Reptr. 38, 353–356 (1949).

1948 (1)

H. E. Millson and E. I. Stearns, Am. Dyestuff Reptr. 37, 423–432 (1948).

1943 (2)

D. L. MacAdam, J. Opt. Soc. Am. 33, 22–23 (1943).

D. L. MacAdam, J. Opt. Soc. Am. 33, 19–21 (1943).

1934 (1)

Beiswanger, J. P. G.

O. L. Sherburne and J. P. G. Beiswanger, Am. Dyestuff Reptr. 41, P144–P148 (1952).

Bensing, P. L.

M. S. Furry and P. L. Bensing, Am. Dyestuff Reptr. 44, P786–P790 (1955).

Caspar, E. C.

E. C. Caspar, Melliand Textilber. 33, 518–521 (1952).

Cooke,

Stearns, Cooke, and Millson, Optical Bleaches in Household Soaps and Detergents (, American Cyanamid Company, Bound Brook, New Jersey).

Davidson, H. R.

Furry, M. S.

M. S. Furry and P. L. Bensing, Am. Dyestuff Reptr. 44, P786–P790 (1955).

Glarum, S. N.

S. N. Glarum and S. E. Penner, Am. Dyestuff Reptr. 43, P310–P314 (1954).

Hanlon, J. J.

Hunter, R. S.

R. S. Hunter, J. Opt. Soc. Am. 45, 404(A) (1955).

Landolt, A.

A. Landolt, Am. Dyestuff Reptr. 38, 353–356 (1949).

MacAdam, D. L.

D. L. MacAdam, J. Opt. Soc. Am. 33, 22–23 (1943).

D. L. MacAdam, J. Opt. Soc. Am. 33, 19–21 (1943).

D. L. MacAdam, J. Opt. Soc. Am. 24, 188–191 (1934).
[Crossref]

Middleton, W. E. K.

W. E. K. Middleton, unpublished report to the Inter-Society Color Council Subcommittee for Problem 18, Colorimetry of Fluorescent Materials, dated March22, 1954. A somewhat smaller reproduction of this curve is given in J. Opt. Soc. Am. 44, 797 (1954), curve for energy distribution of an overcast sky over a hypothetical urban area.

Millson,

Stearns, Cooke, and Millson, Optical Bleaches in Household Soaps and Detergents (, American Cyanamid Company, Bound Brook, New Jersey).

Millson, H. E.

H. E. Millson and E. I. Stearns, Am. Dyestuff Reptr. 37, 423–432 (1948).

Penner, S. E.

S. N. Glarum and S. E. Penner, Am. Dyestuff Reptr. 43, P310–P314 (1954).

Pinte, C.

C. Pinte and P. Rochas, Bull. inst. textile France27, 25–45; Bull. inst. textile France28, 39–51; Bull. inst. textile France 29, 9–24 (1951).

Rochas, P.

C. Pinte and P. Rochas, Bull. inst. textile France27, 25–45; Bull. inst. textile France28, 39–51; Bull. inst. textile France 29, 9–24 (1951).

Sherburne, O. L.

O. L. Sherburne and J. P. G. Beiswanger, Am. Dyestuff Reptr. 41, P144–P148 (1952).

Stearns,

Stearns, Cooke, and Millson, Optical Bleaches in Household Soaps and Detergents (, American Cyanamid Company, Bound Brook, New Jersey).

Stearns, E. I.

H. E. Millson and E. I. Stearns, Am. Dyestuff Reptr. 37, 423–432 (1948).

Uhl, O.

O. Uhl, Fette u. Seifen 53, 84–88 (1951).
[Crossref]

Yabe, A.

A. Yabe, Nat. Sci. Rept. Ochanomizu Univ. 2, 142–147 (1951).

Am. Dyestuff Reptr. (5)

H. E. Millson and E. I. Stearns, Am. Dyestuff Reptr. 37, 423–432 (1948).

A. Landolt, Am. Dyestuff Reptr. 38, 353–356 (1949).

O. L. Sherburne and J. P. G. Beiswanger, Am. Dyestuff Reptr. 41, P144–P148 (1952).

M. S. Furry and P. L. Bensing, Am. Dyestuff Reptr. 44, P786–P790 (1955).

S. N. Glarum and S. E. Penner, Am. Dyestuff Reptr. 43, P310–P314 (1954).

Fette u. Seifen (1)

O. Uhl, Fette u. Seifen 53, 84–88 (1951).
[Crossref]

J. Opt. Soc. Am. (5)

R. S. Hunter, J. Opt. Soc. Am. 45, 404(A) (1955).

D. L. MacAdam, J. Opt. Soc. Am. 24, 188–191 (1934).
[Crossref]

D. L. MacAdam, J. Opt. Soc. Am. 33, 22–23 (1943).

D. L. MacAdam, J. Opt. Soc. Am. 33, 19–21 (1943).

H. R. Davidson and J. J. Hanlon, J. Opt. Soc. Am. 45, 617–620 (1955).
[Crossref]

Melliand Textilber. (1)

E. C. Caspar, Melliand Textilber. 33, 518–521 (1952).

Nat. Sci. Rept. Ochanomizu Univ. (1)

A. Yabe, Nat. Sci. Rept. Ochanomizu Univ. 2, 142–147 (1951).

Other (3)

C. Pinte and P. Rochas, Bull. inst. textile France27, 25–45; Bull. inst. textile France28, 39–51; Bull. inst. textile France 29, 9–24 (1951).

Stearns, Cooke, and Millson, Optical Bleaches in Household Soaps and Detergents (, American Cyanamid Company, Bound Brook, New Jersey).

W. E. K. Middleton, unpublished report to the Inter-Society Color Council Subcommittee for Problem 18, Colorimetry of Fluorescent Materials, dated March22, 1954. A somewhat smaller reproduction of this curve is given in J. Opt. Soc. Am. 44, 797 (1954), curve for energy distribution of an overcast sky over a hypothetical urban area.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fluorescent emission curves for a typical red-shade whitener (No. 1) and a typical green-shade whitener (No. 2). Both curves are arbitrarily adjusted to peak at the same height. The ordinate scale is in arbitrary power units.

Fig. 2
Fig. 2

Enlarged portion of chromaticity diagram, showing the chromaticity of undyed cotton cloth (point F), the chromaticity of the red-shade whitener (point 1), the chromaticity of the green-shade whitener (point 2), and the chromaticity of the source C point. The lines joining point F with point 1 and point 2 represent loci of chromaticities of cloth dyed with varying concentrations of whitener.

Fig. 3
Fig. 3

Greatly enlarged portion of chromaticity diagram in the vicinity of the source C point. The two straight lines have the same significance as in Fig. 2. Two MacAdam ellipses around the source C point are shown; these ellipses are tangent to the two straight lines. The points T are the points of tangency.

Fig. 4
Fig. 4

Yellow-blue axis in a uniform-chromaticity plane. The equal-blueness line is perpendicular to the yellow-blue axis, and is defined geometrically as the locus of centers of circles which are tangent to this axis at a given point. Two such circles are shown as dashed lines. The straight lines 1 and 2 have the same significance as in Figs. 2 and 3.

Fig. 5
Fig. 5

Yellow-blue axis in the CIE chromaticity plane. The equal-blueness line is defined as the locus of centers of MacAdam ellipses which are tangent to the yellow-blue axis. Portions of two such ellipses are shown by dashed lines. The straight lines 1 and 2 have their usual significance. The points (xD, yD) represent chromaticities of cloths dyed with whitener; the point (x0, y0) is the projection of these chromaticities on the yellow-blue axis.

Fig. 6
Fig. 6

Greatly enlarged portion of the chromaticity diagram showing chromaticities of several typical cotton fluorescent whitening agents, and demonstrating the near-constancy of the x-chromaticity value.

Fig. 7
Fig. 7

Change in blueness and lightness upon dyeing a cloth with a red-shade whitener (No. 1) and a green-shade whitener (No. 2). The blueness and lightness units are of comparable magnitude, so that a change of one in blueness would be equivalent in magnitude to a change of one in lightness. The SW values necessary to produce these changes are indicated by the figures along the two straight lines.

Fig. 8
Fig. 8

Block diagram of an ideal fluorimeter which would compare relative daylight whitening efficiency directly. Ultraviolet energy having the same distribution as that in daylight strikes the sample, and the fluorescent light is viewed by a phototube which has an energy response curve identical with the s ¯ curve.

Fig. 9
Fig. 9

Block diagram of fluorimeter used in this work. Ultraviolet energy from a commercial ultraviolet lamp having a peak at approximately 360 mμ is passed through a filter to absorb visible light, and is then directed on the sample. The fluorescent light passes through a filter which eliminates all reflected ultraviolet radiation, and strikes a phototube having an S-4 response curve.

Fig. 10
Fig. 10

Ultraviolet reflectance curves of whitener-dyed samples. These were obtained in a Beckman DU spectrophotometer with reflectance attachment, and with the use of a filter to eliminate fluorescent light.

Fig. 11
Fig. 11

Method of calculating relative whitening efficiency of two whiteners. See text for explanation.

Tables (2)

Tables Icon

Table I Correction factors, ϕIϕF, to put fluorimeter readings of each of the whiteners on the same basis as those of Whitener No. 1.

Tables Icon

Table II Daylight whitening efficiency against Whitener No. 1.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

( y F - y 0 ) / ( x F - x 0 ) = 1.21.
m p = - ( g 11 + g 12 m 0 ) / ( g 12 + g 22 m 0 ) ,
g 11 = 112 × 10 4 ;             2 g 12 = - 115 × 10 4 ;             g 22 = 56 × 10 4 .
( y D - y 0 ) / ( x D - x 0 ) = - 4.13.
y D = y F - m ( x F - x D ) .
y F - y 0 = m ( x F - x D ) - 4.13 ( x D - x 0 ) .
1.21 ( x F - x 0 ) = m ( x F - x D ) - 4.13 ( x D - x 0 ) .
x D - x 0 = ( x F - x 0 ) - ( x F - x D ) .
x F - x D = 5.34 ( x F - x 0 ) / ( 4.13 + m ) .
Δ b = [ g 11 ( Δ x ) 2 + 2 g 12 Δ x Δ y + g 22 ( Δ y ) 2 ] 1 2 ,
Δ b = 740 Δ x = 740 ( x F - x 0 ) .
Δ b = ( 572 + 139 m ) ( x F - x D ) ,
X D = X F + X W , Y D = Y F + Y W , Z D = Z F + Z W , S D = S F + S W .
S F ( x F - x D ) = S W ( x D - x W ) .
x D - x W = ( x F - x W ) - ( x F - x D ) .
x F - x D = S W ( x F - x W ) / ( S F + S W ) .
Δ b = S W ( 572 + 139 m ) ( x F - x W ) / ( S F + S W ) .
Δ b = S W ( 572 + 139 m ) ( x F - x W ) / S F ,
Y W = y W S W ,
Δ L = 0.35 y W S W .
y W = y F - m ( x F - x W ) .
Δ L = 0.35 S W [ y F - m ( x F - x W ) ] .
Δ L 2 - Δ L 1 = Δ b 1 - Δ b 2 .
Δ L 2 - Δ L 1 = 0.35 S W 2 [ y F - m 2 ( x F - x W ) ] - 0.35 S W 1 [ y F - m 1 ( x F - x W ) ] .
Δ b 1 - Δ b 2 = [ S W 1 ( 572 + 139 m 1 ) ( x F - x W ) / S F ] - [ S W 2 ( 572 + 139 m 2 ) ( x F - x W ) / S F ] .
S W 1 S W 2 = [ 572 ( x F - x W ) / S F ] + { 0.35 y F + [ 139 ( x F - x W ) / S F ] - 0.35 ( x F - x W ) } m 2 [ 572 ( x F - x W ) / S F ] + { 0.35 y F + [ 139 ( x F - x W ) / S F ] - 0.35 ( x F - x W ) } m 1 .
S W 1 / S W 2 = 1.02.
S W 1 S W 2 .
F = k 300 m μ 400 m μ Q λ P λ λ A λ d λ ,
F 1 F 2 = k 1 k 2 · 300 m μ 400 m μ ( Q 1 ) λ ( P a ) λ λ ( A 1 ) λ d λ 300 m μ 400 m μ ( Q 2 ) λ ( P a ) λ λ ( A 2 ) λ d λ ,
( F 1 F 2 ) d = k 1 k 2 · 300 m μ 400 m μ ( Q 1 ) λ ( P d ) λ λ ( A 1 ) λ d λ 300 m μ 400 m μ ( Q 2 ) λ ( P d ) λ λ ( A 2 ) λ d λ ,
( F 1 / F 2 ) ϕ I = ( F 1 / F 2 ) d ,
ϕ I = ( F 1 / F 2 ) d F 1 / F 2 = 300 m μ 400 m μ ( Q 1 ) λ ( P d ) λ λ ( A 1 ) λ d λ / 300 m μ 400 m μ ( Q 2 ) λ ( P d ) λ λ ( A 2 ) λ d λ 300 m μ 400 m μ ( Q 1 ) λ ( P a ) λ λ ( A 1 ) λ d λ / 300 m μ 400 m μ ( Q 2 ) λ ( P a ) λ λ ( A 2 ) λ d λ .
ϕ I = λ = 300 , 305 m μ λ = 400 m μ ( P d ) λ λ ( A 1 ) λ / λ = 300 , 305 m μ λ = 400 m μ ( P d ) λ λ ( A 2 ) λ λ = 300 , 305 m μ λ = 400 m μ ( P a ) λ λ ( A 1 ) λ / λ = 300 , 305 m μ λ = 400 m μ ( P a ) λ λ ( A 2 ) λ .
total fluorescence = k 1 380 m μ 620 m μ ( P 1 ) λ V λ T λ d λ
( F 1 F 2 ) d = k 1 k 2 · 380 m μ 620 m μ ( P 1 ) λ V λ T λ d λ 380 m μ 620 m μ ( P 2 ) λ V λ T λ d λ .
S W 1 S W 2 = k 1 k 2 · 380 m μ 620 m μ ( P 1 ) λ s ¯ λ d λ 380 m μ 620 m μ ( P 2 ) λ s ¯ λ d λ .
ϕ F = S W 1 / S W 2 ( F 1 / F 2 ) d = λ = 380 , 390 m μ λ = 620 m μ ( P 1 ) λ s ¯ λ / λ = 380 , 390 m μ λ = 620 m μ ( P 2 ) λ s ¯ λ λ = 380 , 390 m μ λ = 620 m μ ( P 1 ) λ V λ T λ / λ = 380 , 390 m μ λ = 620 m μ ( P 2 ) λ V λ T λ .
ϕ F = ( S W 1 / S W 2 ) / ( F 1 / F 2 ) d ,
ϕ I = ( F 1 / F 2 ) d / ( F 1 / F 2 ) ,
ϕ I ϕ F = ( S W 1 / S W 2 ) / ( F 1 / F 2 ) .
( F 1 / F 2 ) ϕ I ϕ F = ( REF ) 1 / ( REF ) 2 .