Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative Measurement of Gas Density by Means of Light Interference in a Schlieren System

Not Accessible

Your library or personal account may give you access

Abstract

Plane wave fronts in a collimated beam of light are distorted in their passage through a region of variable density, and as a result a variable phase distribution is produced in an exit plane which lies just beyond the disturbance and is perpendicular to the direction of propagation of the collimated beam (optical axis). This phase distribution, ordinarily invisible due to the tremendous rapidity of optical oscillations, can be converted to an intensity distribution in which the maxima and minima of intensity correspond to points in the exit plane where the optical path length differs from that in an undisturbed portion of this plane (free field) by an integral multiple of half a wavelength. This can be done in a conventional schlieren system by forming an image of the exit (object) plane with a convex lens (or parabolic mirror) and then inserting a small absorbing object or other appropriate modification in the focal plane in such a way as to block the central maximum of the Fraunhofer pattern due to the free field. Very little disturbance light is cut off in the process since this light is refracted and does not go through the focal point. The blocking of free-field light sets up a diffraction process which causes this light to spread into the bordering disturbance image. The resulting interference produces the intensity band system mentioned earlier.

If the disturbance is two-dimensional, with density-gradient vectors perpendicular to the optical axis, the measurement of the phase distribution is equivalent to a measurement of density, by virtue of the Dale-Gladstone law, μ−1=Kρ, where μ is the index of refraction, ρ is the density, K is a constant. Measurements which have heretofore required the use of a Mach-Zehnder interferometer can, therefore, be made in a conventional schlieren system. The possibility of duplicating interferometer fringe-field experiments has also been investigated.

© 1957 Optical Society of America

Full Article  |  PDF Article
More Like This
Interference Phenomenon in the Schlieren System*

E. L. Gayhart and Rochelle Prescott
J. Opt. Soc. Am. 39(7) 546-550 (1949)

Two-Beam Interference with Partially Coherent Light

B. J. Thompson and E. Wolf
J. Opt. Soc. Am. 47(10) 895-902 (1957)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.