Abstract

A spectroscopic method, useful for strongly absorbed lines, has been investigated for measuring temperatures of hot gases. The minimum transmission of discrete spectral lines in gases at equilibrium has a simple dependence upon the absolute temperature and this relation is used to measure temperature from a straight line plot. An experimental study has been made of the absorption due to the rotational lines of OH (2∑←2Π) between 3067 and 3090 A in an oxygen-acetylene flame. It is shown that temperatures measured by this method are less affected than the conventional one by lack of sufficient resolving power, flame thickness, and various light sources (either continuous or line).

© 1956 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. (a)L. Huldt and E. Knall, Naturwiss. 41, 421 (1954); (b)E. Bright Wilson and A. J. Wells, J. Chem. Phys. 14, 578 (1946).
  2. B. L. Crawford and H. L. Dinsmore, J. Chem. Phys. 18, 983 (1950); J. Chem. Phys. 18, 1682 (1950).
    [Crossref]
  3. S. S. Penner, J. Chem. Phys. 20, 507 (1952).
    [Crossref]
  4. Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
    [Crossref]
  5. A. M. Bass and H. P. Broida, “A spectrophotometric atlas of the 2∑+−2Π transition of OH”, National Bureau of Standards Circular 541 (1953).
  6. O. Oldenberg and F. F. Rieke, J. Chem. Phys. 6, 439 (1938); R. J. Dwyer and O. Oldenberg, J. Chem. Phys. 12, 351 (1944).
    [Crossref]
  7. W. A. Baum and L. Dunkelman, J. Opt. Soc. Am. 40, 782 (1950).
    [Crossref]
  8. William G. Fastie, J. Opt. Soc. Am. 42, 641 (1952).
    [Crossref]
  9. G. H. Dieke and H. M. Crosswhite, (November, 1948) (unclassified).
  10. H. M. Foley, Phys. Rev. 69, 616 (1946); P. W. Anderson, Phys. Rev. 76, 647 (1949).
    [Crossref]
  11. K. E. Shuler, J. Chem. Phys. 18, 1466 (1950).
    [Crossref]
  12. H. P. Broida, J. Chem. Phys. 21, 1165 (1953).
    [Crossref]
  13. Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
    [Crossref]

1954 (2)

(a)L. Huldt and E. Knall, Naturwiss. 41, 421 (1954); (b)E. Bright Wilson and A. J. Wells, J. Chem. Phys. 14, 578 (1946).

Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
[Crossref]

1953 (3)

A. M. Bass and H. P. Broida, “A spectrophotometric atlas of the 2∑+−2Π transition of OH”, National Bureau of Standards Circular 541 (1953).

H. P. Broida, J. Chem. Phys. 21, 1165 (1953).
[Crossref]

Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
[Crossref]

1952 (2)

1950 (3)

W. A. Baum and L. Dunkelman, J. Opt. Soc. Am. 40, 782 (1950).
[Crossref]

B. L. Crawford and H. L. Dinsmore, J. Chem. Phys. 18, 983 (1950); J. Chem. Phys. 18, 1682 (1950).
[Crossref]

K. E. Shuler, J. Chem. Phys. 18, 1466 (1950).
[Crossref]

1946 (1)

H. M. Foley, Phys. Rev. 69, 616 (1946); P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

1938 (1)

O. Oldenberg and F. F. Rieke, J. Chem. Phys. 6, 439 (1938); R. J. Dwyer and O. Oldenberg, J. Chem. Phys. 12, 351 (1944).
[Crossref]

Bass, A. M.

A. M. Bass and H. P. Broida, “A spectrophotometric atlas of the 2∑+−2Π transition of OH”, National Bureau of Standards Circular 541 (1953).

Baum, W. A.

Benedict,

Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
[Crossref]

Broida,

Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
[Crossref]

Broida, H. P.

H. P. Broida, J. Chem. Phys. 21, 1165 (1953).
[Crossref]

A. M. Bass and H. P. Broida, “A spectrophotometric atlas of the 2∑+−2Π transition of OH”, National Bureau of Standards Circular 541 (1953).

Crawford, B. L.

B. L. Crawford and H. L. Dinsmore, J. Chem. Phys. 18, 983 (1950); J. Chem. Phys. 18, 1682 (1950).
[Crossref]

Crosswhite, H. M.

G. H. Dieke and H. M. Crosswhite, (November, 1948) (unclassified).

Dieke, G. H.

G. H. Dieke and H. M. Crosswhite, (November, 1948) (unclassified).

Dinsmore, H. L.

B. L. Crawford and H. L. Dinsmore, J. Chem. Phys. 18, 983 (1950); J. Chem. Phys. 18, 1682 (1950).
[Crossref]

Dunkelman, L.

Fastie, William G.

Foley, H. M.

H. M. Foley, Phys. Rev. 69, 616 (1946); P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

Huldt, L.

(a)L. Huldt and E. Knall, Naturwiss. 41, 421 (1954); (b)E. Bright Wilson and A. J. Wells, J. Chem. Phys. 14, 578 (1946).

Humphreys,

Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
[Crossref]

Knall, E.

(a)L. Huldt and E. Knall, Naturwiss. 41, 421 (1954); (b)E. Bright Wilson and A. J. Wells, J. Chem. Phys. 14, 578 (1946).

Morowitz,

Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
[Crossref]

Oldenberg, O.

O. Oldenberg and F. F. Rieke, J. Chem. Phys. 6, 439 (1938); R. J. Dwyer and O. Oldenberg, J. Chem. Phys. 12, 351 (1944).
[Crossref]

Penner, S. S.

S. S. Penner, J. Chem. Phys. 20, 507 (1952).
[Crossref]

Plyler,

Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
[Crossref]

Rieke, F. F.

O. Oldenberg and F. F. Rieke, J. Chem. Phys. 6, 439 (1938); R. J. Dwyer and O. Oldenberg, J. Chem. Phys. 12, 351 (1944).
[Crossref]

Selgin,

Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
[Crossref]

Shuler, K. E.

K. E. Shuler, J. Chem. Phys. 18, 1466 (1950).
[Crossref]

J. Chem. Phys. (6)

B. L. Crawford and H. L. Dinsmore, J. Chem. Phys. 18, 983 (1950); J. Chem. Phys. 18, 1682 (1950).
[Crossref]

S. S. Penner, J. Chem. Phys. 20, 507 (1952).
[Crossref]

O. Oldenberg and F. F. Rieke, J. Chem. Phys. 6, 439 (1938); R. J. Dwyer and O. Oldenberg, J. Chem. Phys. 12, 351 (1944).
[Crossref]

K. E. Shuler, J. Chem. Phys. 18, 1466 (1950).
[Crossref]

H. P. Broida, J. Chem. Phys. 21, 1165 (1953).
[Crossref]

Benedict, Plyler, and Humphreys, J. Chem. Phys. 21, 398 (1953).
[Crossref]

J. Opt. Soc. Am. (2)

J. Research Natl. Bur. Standard (1)

Broida, Morowitz, and Selgin, J. Research Natl. Bur. Standard 2, 293 (1954).
[Crossref]

National Bureau of Standards Circular 541 (1)

A. M. Bass and H. P. Broida, “A spectrophotometric atlas of the 2∑+−2Π transition of OH”, National Bureau of Standards Circular 541 (1953).

Naturwiss. (1)

(a)L. Huldt and E. Knall, Naturwiss. 41, 421 (1954); (b)E. Bright Wilson and A. J. Wells, J. Chem. Phys. 14, 578 (1946).

Phys. Rev. (1)

H. M. Foley, Phys. Rev. 69, 616 (1946); P. W. Anderson, Phys. Rev. 76, 647 (1949).
[Crossref]

Other (1)

G. H. Dieke and H. M. Crosswhite, (November, 1948) (unclassified).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of arrangement of apparatus.

Fig. 2
Fig. 2

Photograph of flame on slot burner. The reaction zone is the small bright line just above the burner. The remainder of the luminous zone is due to the hot gases in which there is little chemical reaction.

Fig. 3
Fig. 3

Sketch of the discharge line source.

Fig. 4
Fig. 4

Recorded spectra of OH in emission (top) and absorption (bottom) of an oxygen-acetylene flame. A high pressure xenon lamp was the continuum source.

Fig. 5
Fig. 5

Recorded spectra of OH from an electrodeless discharge through water vapor as seen with no absorption (top) and through a strongly absorbing oxygen-acetylene flame (bottom).

Fig. 6
Fig. 6

Log and log In plots of OH absorption in two thicknesses of an oxygen-acetylene flame. “Temperatures” are measured from the slopes of the curves between 4000 and 7500 cm−1.

Fig. 7
Fig. 7

Effect of resolving power on log In plots of OH absorption with different light sources.

Fig. 8
Fig. 8

The logarithm of the reciprocal transmission and the maximum fractional absorption plotted against the rotational quantum number, K″, of the initial state. Measured isointensity “temperatures” from the first three pairs of lines are listed.

Tables (2)

Tables Icon

Table I Peak absorption of the R2 branch of OH in an oxygen-acetylene flame as measured using a narrow discrete line source

Tables Icon

Table II Measured OH rotational “temperatures.”

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

A = line A ( ν ) d ν = line × ( r - Δ x r + Δ x I 0 ( x ) σ ( ν , x ) ( 1 - e - K ( x ) u ) d x ν - Δ x ν + Δ x I 0 ( x ) σ ( ν , x ) d x ) d ν
A = line ( 1 - e - K ( ν ) u ) d ν .
A u = line K ( ν ) d ν .
line K ( ν ) d ν = 8 π 3 3 h c ν 0 ( 1 - e - h ν 0 / k T ) R 2 e - E / k T Q = S
A = C 1 ν 0 R 2 e - E / k T
log A ν 0 R 2 = log C 1 - log e k T E .
τ min = e - K max u .
K max = S c ν 0 ( m 2 π k T ) 1 2
K max = S π α
log ( ln 1 / τ min R 2 ) = C 2 - log e k T E
log ( ln 1 / τ min R 2 ν 0 ) = C 3 - log α - log e k T E
C 2 = log [ u 3 h Q ( 32 π 5 m k T ) 1 2 ]
C 3 = log 8 π 2 u 3 h c Q