Abstract

The total absorption ∫Aν has been determined for the CO2 bands at 15, 5.2, 4.8, 4.3, 2.7, 2.0, 1.6, and 1.4μ under stimulated atmospheric conditions. The absorber concentrations w ranged from 1 to 1000 atmos cm of CO2 for the strong bands and from 100 to 8600 atmos cm for the weak bands. Nitrogen was added to give total pressures ranging up to atmospheric; the pressure effects of oxygen were found to be similar to those of nitrogen. The observed data can be satisfactorily represented by two types of empirical relations.

  • (1) For small values of total absorption,

    Aνdν=cw12(P+p)k;

  • (2) For large values of total absorption,

    Aνdν=C+DLogw+KLog(P+p),

where w is the CO2 absorber concentration, p is the CO2 partial pressure, and P is the total pressure. Values of the constants c, k, C, D, and K are given for each region of characteristic absorption. The present results are compared with those obtained in earlier studies. The use of the empirical relations in calculating atmospheric absorption is discussed.

© 1956 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Howard, Burch, and Williams, J. Opt. Soc. Am. (to be published).
  2. R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
    [Crossref]
  3. G. Falkenberg, Met. Z. 55, 174 (1938); Met. Z. 56, 72 (1939).
  4. F. Schnaidt, Gerlands Beit. Geophys. 54, 203 (1939).
  5. J. Strong and K. Watanabe, 57, 203 (1939).
  6. E. Rauscher, Z. Physik 7, 418 (1949).
  7. T. Elder and J. Strong, J. Franklin Inst. 255, 189 (1953).
    [Crossref]
  8. W. S. Benedict, private communication.
  9. J. N. Howard and R. M. Chapman, J. Opt. Soc. Am. 42, 856 (1952).
    [Crossref]
  10. W. H. Cloud, Johns Hopkins University Report, January1952, Office of Naval Research Contract.
  11. Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

1953 (1)

T. Elder and J. Strong, J. Franklin Inst. 255, 189 (1953).
[Crossref]

1952 (1)

1951 (1)

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

1949 (1)

E. Rauscher, Z. Physik 7, 418 (1949).

1939 (1)

F. Schnaidt, Gerlands Beit. Geophys. 54, 203 (1939).

1938 (1)

G. Falkenberg, Met. Z. 55, 174 (1938); Met. Z. 56, 72 (1939).

1913 (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Benedict, W. S.

W. S. Benedict, private communication.

Burch,

Howard, Burch, and Williams, J. Opt. Soc. Am. (to be published).

Chapman, R. M.

Cloud, W. H.

W. H. Cloud, Johns Hopkins University Report, January1952, Office of Naval Research Contract.

Elder, T.

T. Elder and J. Strong, J. Franklin Inst. 255, 189 (1953).
[Crossref]

Falkenberg, G.

G. Falkenberg, Met. Z. 55, 174 (1938); Met. Z. 56, 72 (1939).

Gebbie,

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Harding,

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Hilsum,

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Howard,

Howard, Burch, and Williams, J. Opt. Soc. Am. (to be published).

Howard, J. N.

Ladenberg, R.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Pryce,

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Rauscher, E.

E. Rauscher, Z. Physik 7, 418 (1949).

Reiche, F.

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Roberts,

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Schnaidt, F.

F. Schnaidt, Gerlands Beit. Geophys. 54, 203 (1939).

Strong, J.

T. Elder and J. Strong, J. Franklin Inst. 255, 189 (1953).
[Crossref]

J. Strong and K. Watanabe, 57, 203 (1939).

Watanabe, K.

J. Strong and K. Watanabe, 57, 203 (1939).

Williams,

Howard, Burch, and Williams, J. Opt. Soc. Am. (to be published).

Ann. Physik (1)

R. Ladenberg and F. Reiche, Ann. Physik 42, 181 (1913).
[Crossref]

Gerlands Beit. Geophys. (1)

F. Schnaidt, Gerlands Beit. Geophys. 54, 203 (1939).

J. Franklin Inst. (1)

T. Elder and J. Strong, J. Franklin Inst. 255, 189 (1953).
[Crossref]

J. Opt. Soc. Am. (1)

Met. Z. (1)

G. Falkenberg, Met. Z. 55, 174 (1938); Met. Z. 56, 72 (1939).

Proc. Roy. Soc. (London) (1)

Gebbie, Harding, Hilsum, Pryce, and Roberts, Proc. Roy. Soc. (London) A206, 87 (1951).

Z. Physik (1)

E. Rauscher, Z. Physik 7, 418 (1949).

Other (4)

Howard, Burch, and Williams, J. Opt. Soc. Am. (to be published).

W. S. Benedict, private communication.

J. Strong and K. Watanabe, 57, 203 (1939).

W. H. Cloud, Johns Hopkins University Report, January1952, Office of Naval Research Contract.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The observed total absorption data for the 4.3μ CO2 band plotted against absorber concentration.

Fig. 2
Fig. 2

The “reduced total absorption” plotted against “weighted pressure” for the 4.3μ CO2 band.

Fig. 3
Fig. 3

The validity of the empirical relations for the 4.3μ CO2 band.

Tables (2)

Tables Icon

Table I Range of parameters studied.

Tables Icon

Table II Summary of empirical relations.a

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

A ν d ν = c w 1 2 ( P + p ) k ;
A ν d ν = C + D Log w + K Log ( P + p ) ,
A ν = 1 - I ν I 0 = 1 - e - k ν w ,
k ν = S π α ( ν - ν 0 ) 2 + α 2 ,
A ν d ν = S w .
A ν d ν = 2 ( S α w ) 1 2 .
α = α 0 P P 0 ( T 0 T ) 1 2 .
α = β P .
A ν d ν = 2 ( S α w ) 1 2 = 2 ( S β ) 1 2 ( w P ) 1 2 .
A ν d ν = ( w P ) 1 2 i 2 ( β S i ) 1 2 .
A ν d ν = c w 1 2 P k
A ν d ν = c w 1 2 ( P + p ) k             [ Weak Band ]
d I d w = - D I 0 w ,
d A = - d I I 0 = D d w w .
A = D Log w + K .
ν 1 ν 2 A ν d ν = ( ν 2 - ν 1 ) Ā .
A ν d ν = C + D Log w + K Log ( P + p ) .             [ Strong Band ] .
A ν d ν = 34 Log w + f ( P ) ,
A ν d ν = 27.5 + 34 Log w + 31.5 Log ( P + p ) ,
A ν d ν = - 173 + D ( P ) Log w + 92 Log P ,
D ( P ) = 107 - 16 Log P .
Ā = A ν d ν ν 2 - ν 1 .