Abstract

In this paper the effect of the extension of two coherent light sources on interference fringes is examined. The change in the aspect of the fringes when the coherent sources are widened in the same direction is discussed. A relation between the width of the coherent sources, the distance of the screen, and the wavelength for which the interference fringes may be seen, is established. This relation is discussed in connection with some special cases.

© 1956 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Verdet, Vorlesungen über die Wellentheorie des LichtesI Bd. (Friedrich Vieweg and Sohn, Braunschweig, 1881), p. 50.
  2. A. Winchelmann, Handbuch der PhysikII Bd. (Breslau, 1894), p. 528. H. Geiger and K. Schell, Handbuch der PhysikXX Bd. (Berlin, 1928), p. 8. R. W. Pohl, Optik 3, 62 (1943). G. S. Landsberg, Optika 3, 49 (1947).
  3. R. N. Wolfe and F. C. Eisen, J. Opt. Soc. Am. 38, 706 (1948).
    [CrossRef]
  4. K. Kempni, Period. math. phys. astron. (Zagreb) 7, 102 (1952).

1952 (1)

K. Kempni, Period. math. phys. astron. (Zagreb) 7, 102 (1952).

1948 (1)

Eisen, F. C.

Kempni, K.

K. Kempni, Period. math. phys. astron. (Zagreb) 7, 102 (1952).

Verdet, E.

E. Verdet, Vorlesungen über die Wellentheorie des LichtesI Bd. (Friedrich Vieweg and Sohn, Braunschweig, 1881), p. 50.

Winchelmann, A.

A. Winchelmann, Handbuch der PhysikII Bd. (Breslau, 1894), p. 528. H. Geiger and K. Schell, Handbuch der PhysikXX Bd. (Berlin, 1928), p. 8. R. W. Pohl, Optik 3, 62 (1943). G. S. Landsberg, Optika 3, 49 (1947).

Wolfe, R. N.

J. Opt. Soc. Am. (1)

Period. math. phys. astron. (Zagreb) (1)

K. Kempni, Period. math. phys. astron. (Zagreb) 7, 102 (1952).

Other (2)

E. Verdet, Vorlesungen über die Wellentheorie des LichtesI Bd. (Friedrich Vieweg and Sohn, Braunschweig, 1881), p. 50.

A. Winchelmann, Handbuch der PhysikII Bd. (Breslau, 1894), p. 528. H. Geiger and K. Schell, Handbuch der PhysikXX Bd. (Berlin, 1928), p. 8. R. W. Pohl, Optik 3, 62 (1943). G. S. Landsberg, Optika 3, 49 (1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme showing the formation of interference fringes when slits are narrow.

Fig. 2(a)
Fig. 2(a)

Interference fringes obtained by Fresnel’s mirrors. (α) slit width 0.04 mm. (β) slit width 0.06 mm.

Fig. 2(b)
Fig. 2(b)

Photometer curves of interference patterns in Figs. 2 (a)-α and 2 (b)-β.

Fig. 3
Fig. 3

Scheme showing the formation of interference fringes when light sources are extensive.

Fig. 4(a)
Fig. 4(a)

Interference fringes with Fresnel’s mirrors. The slit in front of the light source was gradually broadened.

Fig. 4(b)
Fig. 4(b)

Photometric curves of interference patterns in Fig. 4(a).

Fig. 5
Fig. 5

Scheme of Fresnel’s mirrors.

Fig. 6
Fig. 6

Scheme of Pohl’s experiments with a thin mica foil.

Fig. 7
Fig. 7

Scheme of the interference fringes obtained by a wedge.

Fig. 8
Fig. 8

Scheme of Heidinger’s fringes.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R = A 2 cos 2 ( π / h ) x
I 1 I 1 = I 2 I 2 = h / 2.
Δ = n h ,             ( n = 1 , 2 , 3 , ) .
Δ t g ω = n λ / 2.
( n - 1 ) λ / 2 < Δ t g ω < n λ / 2
Δ = d 1 λ / 2 a .
t g ω = a / d .
t g ω = d sin β 2 ( a + b ) .
ω 1 < ω 2 .
Δ t g ω 1 < λ / 2
Δ t g ω 2 > λ / 2.
ω = 0.