Abstract

<p>The fact that certain rotational “constants” change with the vibrational state of the molecule is well known. It is also true that the two substates of a II state have slightly different values of rotational constants associated with them. The difference of the two <i>B</i> values in a II state is designated by q (usually of the order of 10<sup>-3</sup> cm<sup>-1</sup>), while the difference of the two <i>D</i>’ values is called µ(~10<sup>-7</sup> cm<sup>-1</sup>). We have measured <i>q</i> and µ for the 11<sup>1</sup>1-000 band of HCN with the aid of a Fabry-Perot etalon which had dielectric films for the reflecting surfaces. The method employed made it possible to ignore the effect of phase changes due to reflections in the etalon, and a crude optical calibration of the spacer was all that was necessary. In addition, <i>B</i><sub>d</sub>′-<i>B</i>″ and <i>D</i><sub>d</sub>′-<i>D</i>″ for the <i>Q</i> branch of the 01<sup>1</sup>1-000 band of HCN and <i>B</i><sub>d</sub>′-<i>B</i>″ for the <i>Q</i> branch of the 11<sup>1</sup>1-000 band of N<sub>2</sub>O have been measured. The results are 11<sup>1</sup>1-000 of HCN; <i>q</i>=7.76×10<sup>-3</sup>cm<sup>-1</sup>, µ=20×10<sup>-8</sup> cm<sup>-1</sup> 01<sup>1</sup>1-000 of HCN; <i>B</i><sub>d</sub>′-<i>B</i>″=-0.002 876 cm<sup>-1</sup>, <i>D</i><sub>d</sub>′-<i>D</i>″=9.4×10<sup>-8</sup> cm<sup>-1</sup>11<sup>1</sup>1-000 of N<sub>2</sub>O; <i>B</i><sub>d</sub>′-<i>B</i>″=-0.004 067 cm<sup>-l</sup>, <i>D</i><sub>d</sub>′-<i>D</i>″ <10<sup>-8</sup> cm<sup>-1</sup>.</p><p>Resolution of 175 000 was obtained with the <i>Q</i> branch of the 01<sup>1</sup>1 band of HCN. Taking account of the finite slit width and the inevitable Doppler line broadening, the resolution attained is shown to be 95% of that theoretically to be expected for the double passed grating spectrograph employed in this investigation.</p>

PDF Article

References

  • View by:
  • |
  • |

  1. Shearer, Wiggins, Guenther, and Rank, J. Chem. Phys. (to be published).
  2. J. U. White, J. Opt. Soc. Am. 32, 285 (1942).
  3. A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 488 (1953).
  4. A. E. Douglas and C. K. Møller, J. Chem. Phys. 22, 275 (1954).
  5. J. N. Shearer and T. A. Wiggins, J. Opt. Soc. Am. 45, 133 (1955).

Douglas, A. E.

A. E. Douglas and C. K. Møller, J. Chem. Phys. 22, 275 (1954).

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 488 (1953).

Møller, C. K.

A. E. Douglas and C. K. Møller, J. Chem. Phys. 22, 275 (1954).

Sharma, D.

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 488 (1953).

Shearer, J. N.

J. N. Shearer and T. A. Wiggins, J. Opt. Soc. Am. 45, 133 (1955).

White, J. U.

J. U. White, J. Opt. Soc. Am. 32, 285 (1942).

Wiggins, T. A.

J. N. Shearer and T. A. Wiggins, J. Opt. Soc. Am. 45, 133 (1955).

Other (5)

Shearer, Wiggins, Guenther, and Rank, J. Chem. Phys. (to be published).

J. U. White, J. Opt. Soc. Am. 32, 285 (1942).

A. E. Douglas and D. Sharma, J. Chem. Phys. 21, 488 (1953).

A. E. Douglas and C. K. Møller, J. Chem. Phys. 22, 275 (1954).

J. N. Shearer and T. A. Wiggins, J. Opt. Soc. Am. 45, 133 (1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.