Abstract

A method is described for the determination of the percentage of Hg-202 present in small samples of mercury. An electrodeless discharge tube containing Hg-202 is used as a source of the Hg-202 hyperfine component of the 2537-A resonance line of mercury. By determining the absorbance of this component by mercury vapor, the quantity of the isotope present in the vapor can be determined. The analyses of samples of mercury containing various percentages of Hg-202 agree with values obtained by mass spectrometric methods to within two percent. The method has the advantage over the mass spectrometer of requiring very much smaller samples. Furthermore, contamination from “hangup” of previous samples is avoided. Through the use of other isotopic sources it is shown that the method could be extended to the analysis of the remaining isotopes of mercury.

© 1955 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Cojan and R. Lennieur, Compt. rend. 235, 1634 (1952); K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 and 716 (1952).
    [CrossRef]
  2. W. F. Meggers and F. O. Westfall, , Vol. 44 (1950).
  3. Zelikoff, Wyckoff, Aschenbrand, and Loomis, J. Opt. Soc. Am. 42, 818 (1952).
    [CrossRef]
  4. R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 75, 806 (1953).
    [CrossRef]
  5. A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1934).
  6. M. W. Zemansky, Phys. Rev. 36, 219 (1930).
    [CrossRef]
  7. Osborn, McDonald, and Gunning, J. Chem. Phys. (to be published).

1953 (1)

R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 75, 806 (1953).
[CrossRef]

1952 (2)

J. L. Cojan and R. Lennieur, Compt. rend. 235, 1634 (1952); K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 and 716 (1952).
[CrossRef]

Zelikoff, Wyckoff, Aschenbrand, and Loomis, J. Opt. Soc. Am. 42, 818 (1952).
[CrossRef]

1930 (1)

M. W. Zemansky, Phys. Rev. 36, 219 (1930).
[CrossRef]

Aschenbrand,

Busey, R. H.

R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 75, 806 (1953).
[CrossRef]

Cojan, J. L.

J. L. Cojan and R. Lennieur, Compt. rend. 235, 1634 (1952); K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 and 716 (1952).
[CrossRef]

Giauque, W. F.

R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 75, 806 (1953).
[CrossRef]

Gunning,

Osborn, McDonald, and Gunning, J. Chem. Phys. (to be published).

Lennieur, R.

J. L. Cojan and R. Lennieur, Compt. rend. 235, 1634 (1952); K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 and 716 (1952).
[CrossRef]

Loomis,

McDonald,

Osborn, McDonald, and Gunning, J. Chem. Phys. (to be published).

Meggers, W. F.

W. F. Meggers and F. O. Westfall, , Vol. 44 (1950).

Mitchell, A. C. G.

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1934).

Osborn,

Osborn, McDonald, and Gunning, J. Chem. Phys. (to be published).

Westfall, F. O.

W. F. Meggers and F. O. Westfall, , Vol. 44 (1950).

Wyckoff,

Zelikoff,

Zemansky, M. W.

M. W. Zemansky, Phys. Rev. 36, 219 (1930).
[CrossRef]

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1934).

Compt. rend. (1)

J. L. Cojan and R. Lennieur, Compt. rend. 235, 1634 (1952); K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 and 716 (1952).
[CrossRef]

J. Am. Chem. Soc. (1)

R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 75, 806 (1953).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

M. W. Zemansky, Phys. Rev. 36, 219 (1930).
[CrossRef]

Other (3)

Osborn, McDonald, and Gunning, J. Chem. Phys. (to be published).

A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge University Press, New York, 1934).

W. F. Meggers and F. O. Westfall, , Vol. 44 (1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Optical system for the absorption measurements.

Tables (3)

Tables Icon

Table I Isotopic origin and displacement for the five resolvable hyperfine components of the 2537-A resonance line of mercury.

Tables Icon

Table II The influence of lamp conditions on the transmittance values for a constant mercury pressure in the absorption cell.

Tables Icon

Table III A comparison of Hg-202 analyses of various mercury samples by the present resonance absorption method and by the mass spectrometer.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

log 10 P ( atmos ) = - 3.185 × 10 3 T + 5.109.
A α = ( k 0 ) ( 1 + α 2 ) 1 2 - ( k 0 ) 2 2 ! ( 1 + 2 α 2 ) 1 2 + + ( - 1 ) ( n - 1 ) ( k 0 ) n n ! ( 1 + n α 2 ) 1 2 + ,
Δ ν A = 2 ( 2 R ln 2 ) 1 2 C · ν 0 · ( T M ) 1 2 ,
N T = N 1 98 + N 199 + N 200 + N 201 + N 202 + N 204 .