Abstract

Stereoscopic acuities were determined with and without eye movement, following the experimental procedure used by Wright. Two illuminated apertures were used as the targets seen in the dark against a black background. Measurements were made for these targets separated horizontally for various visual angles up to 52 degrees and for high, low, and unequal luminances. A critical study of the results showed that disparity was responsible for the greater part of stereoscopic acuity. The part played by eye movement (convergence movements), if any, appears to be constant and is of minor importance compared to the part played by disparity.

© 1955 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).
  2. K. N. Ogle, Proc. Phys. Soc. (London) B66, 513 (1953).
  3. M. P. Lord and W. D. Wright, Nature 163, 803 (1949).
    [Crossref]
  4. G. G. Anderson and F. W. Weymouth, Am. J. Physiol. 64, 561 (1923).
  5. M. J. Hirsch and F. W. Weymouth, Arch. Ophthalmol 39 (2), 210 (1948).
    [Crossref]
  6. N. M. S. Langland, Med. Research Council (London), 133 (1929).
  7. W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).
  8. K. N. Ogle, Arch Ophthalmol. (Chicago) 22 (6), 1046 (1939).
    [Crossref]
  9. K. N. Ogle, Researches in Binocular Vision (Saunders, Philadelphia, 1950).
  10. J. S. Valentine, Brit. Med. J. 2, 657 (1923).
  11. D. H. Jacobs, Fundamentals of Optical Engineering (McGraw-Hill Book Company Inc., New York, 1943).

1953 (1)

K. N. Ogle, Proc. Phys. Soc. (London) B66, 513 (1953).

1951 (2)

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

1949 (1)

M. P. Lord and W. D. Wright, Nature 163, 803 (1949).
[Crossref]

1948 (1)

M. J. Hirsch and F. W. Weymouth, Arch. Ophthalmol 39 (2), 210 (1948).
[Crossref]

1939 (1)

K. N. Ogle, Arch Ophthalmol. (Chicago) 22 (6), 1046 (1939).
[Crossref]

1929 (1)

N. M. S. Langland, Med. Research Council (London), 133 (1929).

1923 (2)

G. G. Anderson and F. W. Weymouth, Am. J. Physiol. 64, 561 (1923).

J. S. Valentine, Brit. Med. J. 2, 657 (1923).

Anderson, G. G.

G. G. Anderson and F. W. Weymouth, Am. J. Physiol. 64, 561 (1923).

Hirsch, M. J.

M. J. Hirsch and F. W. Weymouth, Arch. Ophthalmol 39 (2), 210 (1948).
[Crossref]

Jacobs, D. H.

D. H. Jacobs, Fundamentals of Optical Engineering (McGraw-Hill Book Company Inc., New York, 1943).

Langland, N. M. S.

N. M. S. Langland, Med. Research Council (London), 133 (1929).

Lord, M. P.

M. P. Lord and W. D. Wright, Nature 163, 803 (1949).
[Crossref]

Ogle, K. N.

K. N. Ogle, Proc. Phys. Soc. (London) B66, 513 (1953).

K. N. Ogle, Arch Ophthalmol. (Chicago) 22 (6), 1046 (1939).
[Crossref]

K. N. Ogle, Researches in Binocular Vision (Saunders, Philadelphia, 1950).

Valentine, J. S.

J. S. Valentine, Brit. Med. J. 2, 657 (1923).

Weymouth, F. W.

M. J. Hirsch and F. W. Weymouth, Arch. Ophthalmol 39 (2), 210 (1948).
[Crossref]

G. G. Anderson and F. W. Weymouth, Am. J. Physiol. 64, 561 (1923).

Wright, W. D.

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

M. P. Lord and W. D. Wright, Nature 163, 803 (1949).
[Crossref]

Am. J. Physiol. (1)

G. G. Anderson and F. W. Weymouth, Am. J. Physiol. 64, 561 (1923).

Arch Ophthalmol. (Chicago) (1)

K. N. Ogle, Arch Ophthalmol. (Chicago) 22 (6), 1046 (1939).
[Crossref]

Arch. Ophthalmol (1)

M. J. Hirsch and F. W. Weymouth, Arch. Ophthalmol 39 (2), 210 (1948).
[Crossref]

Brit. Med. J. (1)

J. S. Valentine, Brit. Med. J. 2, 657 (1923).

Med. Research Council (London) (1)

N. M. S. Langland, Med. Research Council (London), 133 (1929).

Nature (1)

M. P. Lord and W. D. Wright, Nature 163, 803 (1949).
[Crossref]

Proc. Phys. Soc. (London) (3)

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

W. D. Wright, Proc. Phys. Soc. (London) B64, 289 (1951).

K. N. Ogle, Proc. Phys. Soc. (London) B66, 513 (1953).

Other (2)

K. N. Ogle, Researches in Binocular Vision (Saunders, Philadelphia, 1950).

D. H. Jacobs, Fundamentals of Optical Engineering (McGraw-Hill Book Company Inc., New York, 1943).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch showing schematically Wright’s apparatus for measuring stereoscopic vision.

Fig. 2
Fig. 2

Typical psychometric curves showing distribution of stereoscopic responses to distance of test aperture, for angles 7° and 52°.

Fig. 3
Fig. 3

Graphical representation of the data showing the change in stereoscopic acuity with eye movement (Cθ+Dθ) and with constant fixation Dθ, as the angle of separation between the two targets increases.

Fig. 4
Fig. 4

Graph showing the ratio of the stereoscopic acuity with eye movement to that with constant fixation plotted against separation of targets.

Fig. 5
Fig. 5

Graph showing the change in stereoscopic threshold with separation of the targets, in which the thresholds for the data obtained with eye movement are plotted against one-half the separation of the targets.

Tables (1)

Tables Icon

Table I Stereoscopic acuity and angular separation of targets. (Results of 10 observers obtained with and without eye movement.) (High luminance of targets. Data are the standard deviations given in centimeters.)