Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Stamm and J. J. Whalen, J. Opt. Soc. Am. 36, 2–12 (1946).
    [Crossref] [PubMed]
  2. H. A. Rowland, Phil. Mag. [5] 35, 397–419 (1893).

1946 (1)

1893 (1)

H. A. Rowland, Phil. Mag. [5] 35, 397–419 (1893).

J. Opt. Soc. Am. (1)

Phil. Mag. [5] (1)

H. A. Rowland, Phil. Mag. [5] 35, 397–419 (1893).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (3)

Tables Icon

Table I Symmetrical groove; normal incidence; c=c′=0.14410; a=16.933 A; u=a/2; l=4780 A.

Tables Icon

Table II Normal incidence; c=0.58676; c′=0.30923; a=16.933 A; u=a/3; l=4780 A.

Tables Icon

Table III Normal incidence; c=6.9395; c′=0.14410; a=16.933 A; depth=2391 A; l=4780 A.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ~ l 2 { 1 + c 2 ( μ - c λ ) 2 sin 2 π 1 u ( μ - c λ ) + 1 + c 2 ( μ + c λ ) 2 sin 2 π 1 ( a - u ) ( μ + c λ ) + ( 1 + c 2 ) 1 2 ( 1 + c 2 ) 1 2 ( μ - c λ ) ( μ + c λ ) sin π 1 u ( μ - c λ ) sin π 1 ( a - u ) ( μ + c λ ) × cos π 1 [ ( a - u ) ( μ + c λ ) - u ( μ - c λ ) ] } = l 2 { A + B + C } .
lim c = c 0 I ~ 3 a 2 N 2 sin 2 π l N .
C = 2 ( 1 + c 2 ) 1 2 ( 1 + c 2 ) 1 2 ( μ - c λ ) ( μ + c λ ) sin π 1 u ( μ - c λ ) sin π 1 ( a - u ) ( μ + c ψ ) × cos π 1 [ ( a - u ) ( μ + c λ ) + u ( μ - c λ ) - 2 μ a ] .
lim c = c 0 I ~ 2             a 2 N 2 [ 1 + cos ( - N π ) ] sin 2 N π 2 .
lim c = c 0 I ~ a 2 π 2 = 0.