Abstract

When the Sénarmont compensator is used for measuring birefringence in double refraction of flow instruments, the cross of isocline is seen to undergo a scissors-like collapsing motion as the analyzer is rotated. The position and intensity of the collapsing cross have been calculated, and are in agreement with experimental observations. From this analysis, we can directly demonstrate the end-point sensitivity of the compensator.

PDF Article

References

  • View by:
  • |
  • |

  1. H. de Sénarmont, Ann. Chim. Phys. (2), 73, 337 (1840).
  2. A. von Muralt and J. T. Edsall, J. Biol. Chem. 89, 315, 351 (1930); Trans. Faraday Soc. 26, 837 (1930).
  3. C. Sadron, J. phys. radium (7), 7, 263 (1936).
  4. R. Signer and H. Gross, Z. Physik. Chem. (A), 165, 161 (1933).
  5. Edsall, Rich, and Goldstein, Rev. Sci. Inst. 23, 695, (1952).
  6. R. Cerf and H. A. Scheraga, Chem. Revs. 51, 185 (1952).
  7. The Sénarmont compensator is described briefly in Crystals and the Polarizing Microscope by N. H. Hartshorne and A. Stuart, London, 1950, Second edition p. 455. More detailed discussions are included in F. Gabler and P. Sokob, Z. f. Instrumentenk 58, 301 (1938); F. Gabler and P. Sokob, Physik. Z. 42, 319 (1941); and H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).
  8. Throughout this discussion, the orientation of the optic axis of the liquid as measured by the angle a is regarded as fixed, and determined by the original positions of the arms of the isocline cross before the analyzer is rotated. Thus a is an angular coordinate in the annulus. The darkened areas Q1 and Q2 move together in the annulus as the analyzer is rotated, but the values of a about the annulus remain unchanged.

Cerf, R.

R. Cerf and H. A. Scheraga, Chem. Revs. 51, 185 (1952).

de Sénarmont, H.

H. de Sénarmont, Ann. Chim. Phys. (2), 73, 337 (1840).

Edsall, J. T.

A. von Muralt and J. T. Edsall, J. Biol. Chem. 89, 315, 351 (1930); Trans. Faraday Soc. 26, 837 (1930).

Gross, H.

R. Signer and H. Gross, Z. Physik. Chem. (A), 165, 161 (1933).

Hartshorne, N. H.

The Sénarmont compensator is described briefly in Crystals and the Polarizing Microscope by N. H. Hartshorne and A. Stuart, London, 1950, Second edition p. 455. More detailed discussions are included in F. Gabler and P. Sokob, Z. f. Instrumentenk 58, 301 (1938); F. Gabler and P. Sokob, Physik. Z. 42, 319 (1941); and H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

Sadron, C.

C. Sadron, J. phys. radium (7), 7, 263 (1936).

Scheraga, H. A.

R. Cerf and H. A. Scheraga, Chem. Revs. 51, 185 (1952).

Signer, R.

R. Signer and H. Gross, Z. Physik. Chem. (A), 165, 161 (1933).

Stuart, A.

The Sénarmont compensator is described briefly in Crystals and the Polarizing Microscope by N. H. Hartshorne and A. Stuart, London, 1950, Second edition p. 455. More detailed discussions are included in F. Gabler and P. Sokob, Z. f. Instrumentenk 58, 301 (1938); F. Gabler and P. Sokob, Physik. Z. 42, 319 (1941); and H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

von Muralt, A.

A. von Muralt and J. T. Edsall, J. Biol. Chem. 89, 315, 351 (1930); Trans. Faraday Soc. 26, 837 (1930).

Other

H. de Sénarmont, Ann. Chim. Phys. (2), 73, 337 (1840).

A. von Muralt and J. T. Edsall, J. Biol. Chem. 89, 315, 351 (1930); Trans. Faraday Soc. 26, 837 (1930).

C. Sadron, J. phys. radium (7), 7, 263 (1936).

R. Signer and H. Gross, Z. Physik. Chem. (A), 165, 161 (1933).

Edsall, Rich, and Goldstein, Rev. Sci. Inst. 23, 695, (1952).

R. Cerf and H. A. Scheraga, Chem. Revs. 51, 185 (1952).

The Sénarmont compensator is described briefly in Crystals and the Polarizing Microscope by N. H. Hartshorne and A. Stuart, London, 1950, Second edition p. 455. More detailed discussions are included in F. Gabler and P. Sokob, Z. f. Instrumentenk 58, 301 (1938); F. Gabler and P. Sokob, Physik. Z. 42, 319 (1941); and H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

Throughout this discussion, the orientation of the optic axis of the liquid as measured by the angle a is regarded as fixed, and determined by the original positions of the arms of the isocline cross before the analyzer is rotated. Thus a is an angular coordinate in the annulus. The darkened areas Q1 and Q2 move together in the annulus as the analyzer is rotated, but the values of a about the annulus remain unchanged.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.