Abstract

A new vacuum ultraviolet-light source is described which emits a strong continuous emission spectrum from 1500A to 2250A. This source is constructed of Pyrex, is charged with xenon, and carries a fluorite window which allows the tube to be completely sealed off from the vacuum system. Microwave energy at a frequency of 2450 mc/sec is used to excite the emission. Molecular xenon is presumably responsible for the continuum and the main transition is probably <sup>3</sup>Σ<sub><i>u</i></sub><sup>+</sup>→<sup>1</sup>Σ<sub><i>g</i></sub><sup>+</sup> with some contribution from <sup>1</sup>Σ<sub><i>u</i></sub><sup>+</sup>→<sup>1</sup>Σ<sub><i>g</i></sub><sup>+</sup>. The source has been used to photograph the Schumann-Runge absorption bands of oxygen in the first order of a 21-foot vacuum grating spectrograph.

PDF Article

References

  • View by:
  • |
  • |

  1. See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329-331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).
  2. T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).
  3. J. J. Hopfield, Phys. Rev, 35, 1133 (1930); Phys. Rev. 36 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
  4. R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
  5. Curry and Herzberg, Ann. Physik 19, 800 (1934).
  6. This difficulty has been reduced in a design due to Worley (see reference 2).
  7. Garton (see reference 2) has developed a high-intensity Lyman source using a larger capillary bore and larger condensers.
  8. Y. Tanaka (see reference 3).
  9. Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
  10. Obtained from the Kemet Company, Cleveland, Ohio.
  11. Reagent grade, obtained from the Air Reduction Company, Jersey City, New Jersey.
  12. J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and A139, 683 (1933).
  13. These were Eastman 103F Panchromatic plates for the visible and ultraviolet and Eastman SWR plates for the vacuum region.
  14. M. LaPorte, J. phys. radium 9, 228 (1938).
  15. H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
  16. P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
  17. W. Weizel, Phys. Rev. 38, 642 (1931).
  18. Russell-Saunders notation is used here in spite of the fact that strong j,j-coupling is present.
  19. McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

Ballard, S. S.

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).

Brix, P.

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).

Finkelnburg, W.

See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329-331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).

Herzberg, G.

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).

Hopfield, J. J.

J. J. Hopfield, Phys. Rev, 35, 1133 (1930); Phys. Rev. 36 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).

Knauss, H. P.

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).

Ladenburg, R.

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).

LaPorte, M.

M. LaPorte, J. phys. radium 9, 228 (1938).

Lyman, T.

T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).

McLennan, J. C.

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and A139, 683 (1933).

Tanaka, Y.

Y. Tanaka (see reference 3).

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).

Turnbull, R.

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and A139, 683 (1933).

Van Voorhis, C. C.

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).

Weizel, W.

W. Weizel, Phys. Rev. 38, 642 (1931).

Zelikoff, M.

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).

Other (19)

See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329-331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).

T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).

J. J. Hopfield, Phys. Rev, 35, 1133 (1930); Phys. Rev. 36 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).

Curry and Herzberg, Ann. Physik 19, 800 (1934).

This difficulty has been reduced in a design due to Worley (see reference 2).

Garton (see reference 2) has developed a high-intensity Lyman source using a larger capillary bore and larger condensers.

Y. Tanaka (see reference 3).

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).

Obtained from the Kemet Company, Cleveland, Ohio.

Reagent grade, obtained from the Air Reduction Company, Jersey City, New Jersey.

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and A139, 683 (1933).

These were Eastman 103F Panchromatic plates for the visible and ultraviolet and Eastman SWR plates for the vacuum region.

M. LaPorte, J. phys. radium 9, 228 (1938).

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).

W. Weizel, Phys. Rev. 38, 642 (1931).

Russell-Saunders notation is used here in spite of the fact that strong j,j-coupling is present.

McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.