Abstract

A new vacuum ultraviolet-light source is described which emits a strong continuous emission spectrum from 1500A to 2250A. This source is constructed of Pyrex, is charged with xenon, and carries a fluorite window which allows the tube to be completely sealed off from the vacuum system. Microwave energy at a frequency of 2450 mc/sec is used to excite the emission. Molecular xenon is presumably responsible for the continuum and the main transition is probably 3u+1g+ with some contribution from 1u+1g+. The source has been used to photograph the Schumann-Runge absorption bands of oxygen in the first order of a 21-foot vacuum grating spectrograph.

© 1955 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329–331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).
    [CrossRef]
  2. T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).
    [CrossRef]
  3. J. J. Hopfield, Phys. Rev. 35, 1133 (1930); Phys. Rev. 36, 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
    [CrossRef]
  4. R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
    [CrossRef]
  5. Curry and Herzberg, Ann. Physik 19, 800 (1934).
    [CrossRef]
  6. This difficulty has been reduced in a design due to Worley (see reference 2).
  7. Garton (see reference 2) has developed a high-intensity Lyman source using a larger capillary bore and larger condensers.
  8. Y. Tanaka (see reference 3).
  9. Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
    [CrossRef]
  10. Obtained from the Kemet Company, Cleveland, Ohio.
  11. Reagent grade, obtained from the Air Reduction Company, Jersey City, New Jersey.
  12. J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and Proc. Roy. Soc. (London) A139, 683 (1933).
  13. These were Eastman 103F Panchromatic plates for the visible and ultraviolet and Eastman SWR plates for the vacuum region.
  14. M. LaPorte, J. phys. radium 9, 228 (1938).
    [CrossRef]
  15. H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
    [CrossRef]
  16. P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
    [CrossRef]
  17. W. Weizel, Phys. Rev. 38, 642 (1931).
    [CrossRef]
  18. Russell-Saunders notation is used here in spite of the fact that strong j,j-coupling is present.
  19. McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

1954 (1)

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
[CrossRef]

1953 (1)

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
[CrossRef]

1938 (1)

M. LaPorte, J. phys. radium 9, 228 (1938).
[CrossRef]

1935 (1)

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
[CrossRef]

1934 (1)

Curry and Herzberg, Ann. Physik 19, 800 (1934).
[CrossRef]

1933 (1)

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
[CrossRef]

1931 (1)

W. Weizel, Phys. Rev. 38, 642 (1931).
[CrossRef]

1930 (2)

J. J. Hopfield, Phys. Rev. 35, 1133 (1930); Phys. Rev. 36, 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
[CrossRef]

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and Proc. Roy. Soc. (London) A139, 683 (1933).

1929 (1)

T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).
[CrossRef]

Ballard, S. S.

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
[CrossRef]

Brix, P.

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
[CrossRef]

Curry,

Curry and Herzberg, Ann. Physik 19, 800 (1934).
[CrossRef]

Finkelnburg, W.

See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329–331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).
[CrossRef]

Garton,

Garton (see reference 2) has developed a high-intensity Lyman source using a larger capillary bore and larger condensers.

Herzberg,

Curry and Herzberg, Ann. Physik 19, 800 (1934).
[CrossRef]

Herzberg, G.

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
[CrossRef]

Hopfield, J. J.

J. J. Hopfield, Phys. Rev. 35, 1133 (1930); Phys. Rev. 36, 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
[CrossRef]

Knauss, H. P.

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
[CrossRef]

Ladenburg, R.

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
[CrossRef]

LaPorte, M.

M. LaPorte, J. phys. radium 9, 228 (1938).
[CrossRef]

Lyman, T.

T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).
[CrossRef]

McLennan,

McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

McLennan, J. C.

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and Proc. Roy. Soc. (London) A139, 683 (1933).

Tanaka, Y.

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
[CrossRef]

Y. Tanaka (see reference 3).

Turnbull,

McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

Turnbull, R.

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and Proc. Roy. Soc. (London) A139, 683 (1933).

Van Voorhis, C. C.

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
[CrossRef]

Weizel, W.

W. Weizel, Phys. Rev. 38, 642 (1931).
[CrossRef]

Zelikoff, M.

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
[CrossRef]

Ann. Physik (1)

Curry and Herzberg, Ann. Physik 19, 800 (1934).
[CrossRef]

Astrophys. J. (1)

T. Lyman, Astrophys. J. 60, 1 (1929); G. Collins and W. C. Price, Rev. Sci. Instr. 5, 423 (1934); R. E. Worley, Rev. Sci. Instr. 13, 67 (1942); R. Maeder, Helv. Phys. Acta 21, 411 (1948); W. R. S. Garton, J. Sci. Instr. 30, 119 (1953).
[CrossRef]

J. Chem. Phys. (1)

P. Brix and G. Herzberg, J. Chem. Phys. 21, 2240 (1953); Can. J. Phys. 32, 110 (1954).
[CrossRef]

J. phys. radium (1)

M. LaPorte, J. phys. radium 9, 228 (1938).
[CrossRef]

Phys. Rev. (5)

H. P. Knauss and S. S. Ballard, Phys. Rev. 48, 796 (1935).
[CrossRef]

W. Weizel, Phys. Rev. 38, 642 (1931).
[CrossRef]

J. J. Hopfield, Phys. Rev. 35, 1133 (1930); Phys. Rev. 36, 784 (1930); and Astrophys. J. 72, 133 (1930); Y. Tanaka, Sci. Pap. Inst. Phys. Chem. Research (Tokyo) 39, 456 (1942).
[CrossRef]

R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43, 315 (1933); S. W. Leifson, Astrophys. J. 63, 73 (1926); Platt, Klevens, and Price, J. Chem. Phys. 17, 466 (1949); P. G. Wilkinson and H. L. Johnston, J. Chem. Phys. 18, 190 (1950); Inn, Watanabe, and Zelikoff, J. Chem. Phys. 21, 1648 (1953); and Tanaka, Inn, and Watanabe, J. Chem. Phys. 21, 1651 (1953).
[CrossRef]

Y. Tanaka and M. Zelikoff, Phys. Rev. 93, 933 (1954); J. Opt. Soc. Am. 44, 254 (1954).
[CrossRef]

Proc. Roy. Soc. (London) (1)

J. C. McLennan and R. Turnbull, Proc. Roy. Soc. (London) A129, 266 (1930), and Proc. Roy. Soc. (London) A139, 683 (1933).

Other (9)

These were Eastman 103F Panchromatic plates for the visible and ultraviolet and Eastman SWR plates for the vacuum region.

Russell-Saunders notation is used here in spite of the fact that strong j,j-coupling is present.

McLennan and Turnbull (see reference 12) estimated a van der Waals depth of 0.07 electron volts from the short-wavelength spread of the absorption continuum.

Obtained from the Kemet Company, Cleveland, Ohio.

Reagent grade, obtained from the Air Reduction Company, Jersey City, New Jersey.

This difficulty has been reduced in a design due to Worley (see reference 2).

Garton (see reference 2) has developed a high-intensity Lyman source using a larger capillary bore and larger condensers.

Y. Tanaka (see reference 3).

See, e.g., W. Finkelnburg, Continuierliche Spectren (Verlag Julius Springer, Berlin, Germany, 1939), p. 184 and pp. 329–331; and the following: Dejardin and Cavassilas, Rev. opt. 18, 251 (1939); A. J. Allen and R. G. Franklin, J. Opt. Soc. Am. 29, 453 (1939); A. J. Allen, J. Opt. Soc. Am. 31, 268 (1941); E. Lorenz and P. D. Kueck, J. Opt. Soc. Am. 33, 663 (1943); Johnson, Watanabe, and Tousey, J. Opt. Soc. Am. 41, 702 (1951); and G. H. Dieke and S. P. Cunningham, J. Opt. Soc. Am. 42, 187 (1952).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of apparatus. SP, spectrograph; SL, slit; W, calcium fluoride window; G, ground joint; T, Pyrex discharge tube; A, microwave antenna; GS, graded quartz-to-Pyrex seal; GT, quartz getter tube; C trap; P, sealing-off position.

Fig. 2
Fig. 2

The xenon continuum near its short wavelength limit taken on the 21-foot vacuum grating showing pressure broadening of the resonance line. (A) 30-minute exposure at 50-mm pressure; showing the Xe2 absorption bands at 1487.9A; (B) 30-minute exposure at 100-mm pressure; (C) 30-minute exposure at 190-mm pressure; (D) 30-minute exposure at 350-mm pressure; (E) 10-minute exposure at 190-mm pressure showing the 0–0 and 0–1 absorption bands of carbon monoxide.

Fig. 3
Fig. 3

Densitometer traces of the xenon continuum at various pressures: (A) 50 mm; (B) 100 mm; (C)170 mm; (D) 350 mm.

Fig. 4
Fig. 4

Xenon emission in the visible and near ultraviolet at various pressures: (A) 50-mm xenon; (B) 100-mm xenon (C) 190-mm xenon; (D) 350-mm xenon; (E) enlargement of the 3080-A emission band, 190-mm pressure.

Fig. 5
Fig. 5

Absorption spectrum of the Schumann-Runge absorption bands of oxygen using the xenon continuum as a background.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

5 s 2 5 p 6 , S 1 0
5 s 2 5 p 5 6 s , P 3 2 , 1 , 0 .
( σ g 5 s ) 2 ( σ u 5 s ) 2 ( σ g 5 p ) 2 ( π u 5 p ) 4 ( π g 5 p ) 4 ( σ u 5 p ) 2 , Σ 1 g + .