Abstract

The refractive indices of CsI were determined at three temperatures near 15, 24, and 34°C for wavelengths from 0.29 micron in the ultraviolet to 53 microns in the infrared. The thermal coefficients of index were determined for each wavelength and all data were reduced to 24°C. A dispersion equation of the Sellmeier type having five terms was fitted to these data. Four of the terms contained absorption wavelengths which were either known experimentally or had been computed from the lattice constants of the crystal. The fifth was adjusted to fit the data and has a value of about 0.02 micron. The formula was extrapolated to infinite wavelength, and the value of n2 agreed with the known dielectric constant at 30 cm. The dispersion of CsI for infrared wavelengths from about 30 to 40 microns is less than that of CsBr but only by a factor of about 2. At 50 microns the dispersion of CsI is practically equal to the 40-micron dispersion of CsBr.

© 1955 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a summary of available data see A. Smakula, “Physical properties of optical crystals,” , distributed by Office of Technical Services, Department of Commerce, Washington, D. C.
  2. W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
    [Crossref]
  3. L. W. Tilton, J. Research Natl. Bur. Standards 17, 389 (1936).
    [Crossref]
  4. Earl K. Plyler and Wilbur C. Peters, J. Research Natl. Bur. Standards 45, 462 (1950).
    [Crossref]
  5. Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
    [Crossref]
  6. L. W. Tilton, J. Research Nat. Bur. Standards 2, 909 (1929).
    [Crossref]
  7. K. F. Herzfeld and K. L. Wolf, Ann. Physik. 78, 35 (1925).
    [Crossref]
  8. R. Hilsch and R. W. Pohl, Z. Physik. 59, 812 (1930); E. G. Schneider and H. M. O’Bryan, Phys. Rev. 51, 293 (1937).
    [Crossref]
  9. H. Rubens, Ber. Berl. A. Kad. Wisc.513 (1913), 4 (1915); H. W. Hols, Ann. Physik 29, 433 (1937); M. Czerney, Z. Physik. 65, 600 (1930); W. M. Sinton and W. C. Davis, J. Opt. Soc. Am. 44, 503 (1954).
    [Crossref]
  10. K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London) 206, 447 (1951).
    [Crossref]
  11. Robert C. Powell, Natl. Bur. Standards (private communication).
  12. Ballard, Combes, and McCarthy, J. Opt. Soc. Am. 43, 975 (1953).
    [Crossref]

1953 (2)

W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Ballard, Combes, and McCarthy, J. Opt. Soc. Am. 43, 975 (1953).
[Crossref]

1951 (1)

K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London) 206, 447 (1951).
[Crossref]

1950 (1)

Earl K. Plyler and Wilbur C. Peters, J. Research Natl. Bur. Standards 45, 462 (1950).
[Crossref]

1937 (1)

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

1936 (1)

L. W. Tilton, J. Research Natl. Bur. Standards 17, 389 (1936).
[Crossref]

1930 (1)

R. Hilsch and R. W. Pohl, Z. Physik. 59, 812 (1930); E. G. Schneider and H. M. O’Bryan, Phys. Rev. 51, 293 (1937).
[Crossref]

1929 (1)

L. W. Tilton, J. Research Nat. Bur. Standards 2, 909 (1929).
[Crossref]

1925 (1)

K. F. Herzfeld and K. L. Wolf, Ann. Physik. 78, 35 (1925).
[Crossref]

1913 (1)

H. Rubens, Ber. Berl. A. Kad. Wisc.513 (1913), 4 (1915); H. W. Hols, Ann. Physik 29, 433 (1937); M. Czerney, Z. Physik. 65, 600 (1930); W. M. Sinton and W. C. Davis, J. Opt. Soc. Am. 44, 503 (1954).
[Crossref]

Ballard,

Combes,

Dennison,

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Ginsburg,

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Herzfeld, K. F.

K. F. Herzfeld and K. L. Wolf, Ann. Physik. 78, 35 (1925).
[Crossref]

Hilsch, R.

R. Hilsch and R. W. Pohl, Z. Physik. 59, 812 (1930); E. G. Schneider and H. M. O’Bryan, Phys. Rev. 51, 293 (1937).
[Crossref]

Krishnan, K. S.

K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London) 206, 447 (1951).
[Crossref]

McCarthy,

Peters, Wilbur C.

Earl K. Plyler and Wilbur C. Peters, J. Research Natl. Bur. Standards 45, 462 (1950).
[Crossref]

Plyler, Earl K.

Earl K. Plyler and Wilbur C. Peters, J. Research Natl. Bur. Standards 45, 462 (1950).
[Crossref]

Pohl, R. W.

R. Hilsch and R. W. Pohl, Z. Physik. 59, 812 (1930); E. G. Schneider and H. M. O’Bryan, Phys. Rev. 51, 293 (1937).
[Crossref]

Powell, Robert C.

Robert C. Powell, Natl. Bur. Standards (private communication).

Randal,

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Rodney, W. S.

W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Roy, S. K.

K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London) 206, 447 (1951).
[Crossref]

Rubens, H.

H. Rubens, Ber. Berl. A. Kad. Wisc.513 (1913), 4 (1915); H. W. Hols, Ann. Physik 29, 433 (1937); M. Czerney, Z. Physik. 65, 600 (1930); W. M. Sinton and W. C. Davis, J. Opt. Soc. Am. 44, 503 (1954).
[Crossref]

Smakula, A.

For a summary of available data see A. Smakula, “Physical properties of optical crystals,” , distributed by Office of Technical Services, Department of Commerce, Washington, D. C.

Spindler, R. J.

W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

Tilton, L. W.

L. W. Tilton, J. Research Natl. Bur. Standards 17, 389 (1936).
[Crossref]

L. W. Tilton, J. Research Nat. Bur. Standards 2, 909 (1929).
[Crossref]

Weber,

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Wolf, K. L.

K. F. Herzfeld and K. L. Wolf, Ann. Physik. 78, 35 (1925).
[Crossref]

Ann. Physik. (1)

K. F. Herzfeld and K. L. Wolf, Ann. Physik. 78, 35 (1925).
[Crossref]

Ber. Berl. A. Kad. Wisc. (1)

H. Rubens, Ber. Berl. A. Kad. Wisc.513 (1913), 4 (1915); H. W. Hols, Ann. Physik 29, 433 (1937); M. Czerney, Z. Physik. 65, 600 (1930); W. M. Sinton and W. C. Davis, J. Opt. Soc. Am. 44, 503 (1954).
[Crossref]

J. Opt. Soc. Am. (1)

J. Research Nat. Bur. Standards (1)

L. W. Tilton, J. Research Nat. Bur. Standards 2, 909 (1929).
[Crossref]

J. Research Natl. Bur. Standards (3)

W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 123 (1953).
[Crossref]

L. W. Tilton, J. Research Natl. Bur. Standards 17, 389 (1936).
[Crossref]

Earl K. Plyler and Wilbur C. Peters, J. Research Natl. Bur. Standards 45, 462 (1950).
[Crossref]

Phys. Rev. (1)

Randal, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Proc. Roy. Soc. (London) (1)

K. S. Krishnan and S. K. Roy, Proc. Roy. Soc. (London) 206, 447 (1951).
[Crossref]

Z. Physik. (1)

R. Hilsch and R. W. Pohl, Z. Physik. 59, 812 (1930); E. G. Schneider and H. M. O’Bryan, Phys. Rev. 51, 293 (1937).
[Crossref]

Other (2)

For a summary of available data see A. Smakula, “Physical properties of optical crystals,” , distributed by Office of Technical Services, Department of Commerce, Washington, D. C.

Robert C. Powell, Natl. Bur. Standards (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Refractive index of CsI as a function of wavelength. Wavelength scale is logarithmically graduated.

Fig. 2
Fig. 2

Comparison of the dispersion of CsI with several other infrared transmitting media. Both abscissa and ordinate are logarithmically graduated.

Fig. 3
Fig. 3

The thermal coefficient of refractive index of CsI as a function of wavelength. Wavelength scale is logarithmically graduated. (The values on the ordinate should all be negative.)

Fig. 4
Fig. 4

The part of the thermal coefficient of refractive index of CsI resulting from changes in absorption band wavelength. Wavelength scale is logarithmically graduated.

Tables (6)

Tables Icon

Table I Observed and computed values of CsI (24°C).

Tables Icon

Table II Refractivity of cesium iodide at six temperatures for visible wavelengths and thermal coefficients of refractive index for visible wavelengths.

Tables Icon

Table III Constants of the dispersion equation.

Tables Icon

Table IV Computed refractivity, (n−1)×105, of CsI at regular intervals.

Tables Icon

Table V Computed dispersion of cesium iodide.

Tables Icon

Table VI Thermal coefficients of CsI.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n 2 = = 1 + α ,
n 2 - 1 = B j k j λ 2 λ 2 - λ j 2 ,
d n d T = 1 2 n 1 N d N d T j k j λ 2 λ 2 - λ j 2 + 1 2 n j 2 k j λ 4 ( λ 2 - λ j 2 ) 2 1 λ j d λ j d T ,
- 1 N d N d T = 1 V d V d T = β ,
d n d T = β ( n 2 - 1 ) 2 n + j F ( λ , λ j ) d λ j d T ,
F ( λ , λ j ) = 2 k j λ 4 [ ( λ 2 - λ j 2 ) 2 λ j ] .
d n d T + β ( n 2 - 1 ) 2 n = j F ( λ , λ j ) d λ j d T
n 2 - 1 = k 1 λ 2 λ 2 - λ 1 2 + k 2 λ 2 λ 2 - λ 2 2 + k 3 λ 2 λ 2 - λ 3 2 + k 4 λ 2 λ 2 - λ 4 2 + k 5 λ 2 λ 2 - λ 5 2 .